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, ABSTRACT

/
!- /
The need for a micromechanical approach to modelling the stress—strain

response of granular soil is discussed and justified. The report focuses on
i

the small shear strain (y_ﬁ 0.01%) behavior, and investigates the validity of

#

analytically modelling uniform, rounded-grained quartz sands by arrays of

- 4
ty o ?

identical elastic quartz spheres.h QsNa—first~ssep,»the stress-strain proper—

b

ties oﬁAéix/%egular arrays of spheres are studie§’$a~somE’detati; with fecus-

-

. on isotropic and transversely isotropic boundary loading.

An analytical procedure is established for determining the elastic moduli
of a random assemblage of equal elastic spheres of arbitrary mean porosity,
subjected to isotropic confining pressure. The procedure uses the properties
of the regular arrays already described, Nt ;ccounts for the spatial distri-
bution of porosity, and Qciéalculates the macroscopic moduli through the Self
C;nsiscent Method. The procedure was applied to compute the shear and bulk
moduli of assemblages of quartz spheres;ywhich were then compared with static
and dynamic measurements on quartz sands from the literature. The theoretical
sands are significantly stiffer than &he'éctual soils due to the lower number
of effective contacts in actual sands. However, excellent agreement was found
with resonant column shear modulus measurements on Ottawa $and, after subject-

ing it to a large number of cycles of shear prestraining, which increased the

number of contacts toward the theoretical value.
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o~ Section 1
INTRODUCTION

)
- The main objective of this report is to present a simple, yet rigorous,
::: particulate mechanics model of the stress—strain response of granular soil
= under isotropic boundary loading at very small shear strains, y, of the order
~ of 107%% or less. The proposed model idealizes sand as a combination of regu-
;: lar arrays of elastic, rough spheres and uses Mindlin's formulation for the ;
. contacts. In turn, this is the first stage of a long-term attempt to model &E:F
C: sands as 3-D spatial arrangements of regular arrays at both small strains (y £ EEEE
EE Yy = 0.01%) and large strains (y > y. = 0.01%), where y, = 0.0l% is the thres- EEEE
i hold strain for densification and pore water pressure buildup(*). A second ﬁ;i{
}; stage will include anisotropically loaded granular media, and the ultimate goal %EEE

is to perform 2-D and 3-D computer simulations of arrays of spheres at differ— §E$E

1Y

'-‘

ent small and large strain ranges, including analytical modelling of densifica-

P

tion under boundary cyclic loading.

Yy

This is a final report of a research on the subject performed by the

1N

authors in cooperation with a U. of Texas team headed by Prof. Stokoe.

l'.

. "Elastic constants” of interest at very small strains include the shear

i

»

W and bulk moduli and the Poisson's Ratio(s). Experimental results and basic

-3 considerations indicate that these "constants” depend on both the void ratio of

the soil and the state of confining stresses. The variations of these moduli ;

- AN

o and of the damping of the soil with an applied shear strain up to the threshold S

) Y

.. are also of interest, as is the value of the threshold strain itself at which T

<. ".:'...\_‘

e
"\':','
AN

}j (*) The concepts of small and large shear strains as used here are consistent :uiﬁ

- with usual Soil Dynamics terminology, but they do not coincide with that of Lewj

traditional Soil Mechanics, where much greater strains, about 1% or larger }}3:

- are usually of interest. ::'.:'.:
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gross sliding occurs at the grains' contacts.

These small strain soil parameters are very important in geotechnical
englineering problems involving cyclic loading or wave propagation in the soil,
such as: ocean wave loading, soll structure interaction, site response,
ground settlement and liquefaction during earthquakes. Due to this, a great
number of experimental studies of small strain behavior have been performed,
and correlations have been developed for practical use. Especially important
are the equations for the shear modulus at very small strains, Gpax, in sands
developed by Hardin and Richart (1963) and Seed and Idriss (1970) on the
assumption that these soils can be treated as elastic isotropic solids. 1In
both correlations, discussed in more detail in Section 2, Gpax = A'(;o)o's,
wich.;l, ;é, ;5 being the effective principal stresses, ;; = (;i + g9 + 03)/3
is the mean effective stress and A is a soll constant which depends on void
ratio or relative density. Both correlations assume that Gp,y (and thus, also,
the shear wave velocity, Vg = (Gmax/p)l/z), is the same for isotropically or
anisétropically loaded sand, provided that the mean stress ;Q is the same;
also, both correlations assume that for the anisotropic loading case Gp,, and
Vg do not change with direction.

These assumptions for Gpyy in sands have been challenged more recently by
the experimental results obtained by Roesler (1979), Knox et al. (1982) and Yu
and Richart (1984), as discussed in Section 2. Therefore, a main motivation
for this work was the need, suggested by those experimental findings, for a
fresh approach to our basic understanding of Gpax and other small-strain soil
parameters. Some preliminary analytical results previously obtained by the
senior author (Dobry et al., 1982) had shown that a particulate mechaniecs
approach was very well suited to this purpose, and should be the basis of this

fresh approach,
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The large strain (0.017% f Y E 1%) behavior of granular solls 1s also very
important in engineering problems involving cyclic loading, and especially
those related to earthquakes. At these strains, the stress-strain behavior
becomes strongly nonlinear and hysteretic, and rearrangement of particles take
place producing phenomena such as densification and pore water pressure build-
up (Silver and Seed, 1971; Youd, 1972; Dobry et al., 1982; National Research
Council, 1985). A number of continuum mechanics models, based mostly on the
Incremental Theory of Plasticity, try to simulate this behavior and have been
proposed for soils, as discussed in Section 3.

A summary literature review of previous relevant particulate mechanics
studies is presented in Section 4. Many of these past investigations have
focused on the very large strain (y > 1%) and strength behavior of granular
solls; at those very large strains, gross sliding and rolling of the grains are
main contributors to the overall strain, while the elasticity of the particles
and contacts play a minor or negligible role. On the other hand, for the small
to large strain ranges of interest of the proposed research, the elasticity of
the particles and the details of the force-displacement response at the contacts
are very significant factors. The discussion in Section 4 includes a general
model recently proposed for the force—-displacement response at the contact
between two identical elastic spheres (Seridi and Dobry, 1984).

The results of the present research are discussed in Sections 5 and 6.
Section 5 presents a detailed study of the differential stress—strain relations
for various regular arrays of spheres. Section 6 describes an application of
these findings, using the Self-Consistent Method, to a random arrangement of
regular arrays subjected to isotropic boundary loading, and with the arrangement

having an arbitrary macroscopic void ratio.
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Section 2

LABORATORY MEASUREMENTS ON SANDS AT SMALL STRAINS

Starting around 1960, a number of cyclic and dynamic laboratory measure-
ments have been performed to determine the stress-strain behavior of granular
arrays and of natural sands at small strains. Properties studied have in-
cluded: 1) maximum shear modulus at very small strains, Gp.y; 11i) the varia-
tion of secant modulus, G, with shear strain, y; iii) the Poisson's ratio of
the soil; iv) the variation of shear damping ratio with strain; and v) the
threshold shear strain, y., at which densification and pore pressure bulldup
start. Many of these tests have been conducted in a triaxial cell, on sand
specimens isotropically or anisotropically consolidated under a biaxial stress
state (93 = 03 or o3 = g1), with the small strain measurements performed using
the pulse method, the resonant column or cyclic torsional techniques, and with
particular emphasis on shear modulus determinations. Important results and
state~of~the—art summaries of these modulus measurements have been presented
by Duffy and Mindlin (1957), Hardin and Richart (1963), Lawrence (1965),
Richart et al. (1970), Seed and Idriss (1970), Hardin and Drnevich (1972),
Woods (1978), Iwasaki et al. (1978), and Tatsuoka et al. (1979).

As mentioned before, "small strains” are defined here by the condition ¥y
< Y¢, as in this range the original geometry of the granular array or sand
remains essentially unchanged, with very few or no particles experiencing
gross sliding or rolling, and, thus, with the macroscopic strain of the array
being controlled by the elastic deformations of the particles and by localized
slips within the areas of contact areas between particles. In many sands, vy
= 107% = 10'22; measurements and studies of y. have been presented by Drnevich

and Richart (1970), Youd (1972), Pyke (1973), Dobry et al. (1980, 1981, 198la,
4

gt

R

o e 'e

3

n"\' q ‘-. l-' I. \' '~" -_‘ h]
E N AR AN AN AL -

N Y N e T e L

f
S
F.

3
e

o

oy

e % Tw-owey
] T

L<~rr

-~

)

TP
o .
..‘\..‘
u

FAr
AR

;%'-" ‘A a4

iZ?‘_..m.

e

I 2 i 5 R

o 4

5y

vy

e

-

)

e
s [
l"\..n’
PRSI EOTy SON

e
by
A

A

’

" & A

P,
P A R A

¥

ot

ol

R

e
Feee

%
«

.

'

a4 »
s

.l.""l
A

et L,

el
LN

o




)'\-
iy
N N
L 5 L
g
"o ..\.:'-
& o d
N 1982), Dyvik et al. (1982), Oner (1984) and National Research Council (1985). ,:J‘
= ~
s
N
!; On the basis of laboratory measurements, Hardin and Richart (1963) pX
2 proposed the following expression for Gp,x: heY!
% -
[} —
s Gpax = £(e)(o,)0+5 (1) e
) P
% o
e where e = void ratio, f(e) = 2630(2.17-e)2/(1+e) for round-grained sands, and s
+ ol
oo f(e) = 1230(2.97-e)2/(1+e) for angular-grained sands; both Gpax and o, are in ::ﬁ
N oo
= psi in Eq. 1. -
o '::_:'..'
pe Seed and Idriss (1970) proposed the alternative expression: Bﬁé
" _: -.'-
‘ ~ 10.5 BN
'i Cpax = 1,000 Kypay ()" (2) é:i
5 .
- ‘L
> where G . and 0o are in psf, and Kypay 1s a function of relative density. A
. R
D¢ e
’ Eqs. 1-2 reflect the conclusion of these and other studies, that Gp,y and -
v i d
if Vg are mainly a function of void ratio or relative density, and of the mean o
. I:; '_..
—_— SN
effective normal stress 0o+ Other variables, such as static shear stresses, G:ﬁ
>, :.-_..P
x‘ stress history, stress path (compression versus extension loading), frequency '}?:
o
L, of cyclic loading, degree of saturation, were found to have, either a small L‘
L% -, >
4 A
™ effect or no effect at all (Richart et al., 1970, Yu and Richart, 1984). One ji?
E: exception is that a large number of shear prestraining cycles at strains larger :{l
i than the threshold was found to increase Gp,4 significantly (Drnevich and _“
=) N
- Richart, 1970). i
N
-, It is useful to make explicit some of the implications of Eqs. 1-2 for an- ﬁjs
"A s :
) isotropically loaded dry sand, either for the general "triaxial™ case in which E;
:E 0] # g2 # g3 or, as is very usually the case in the field, or for the “biaxtfal” :Sfj
case, 0] #0 3 = g3+ (The bars have now been dropped from the stresses, as for i%:
f - @??
;j a dry sand, ¢ = ¢). These implications are: -
A
- S
< A
:"- N :_\
4 R
B =~
: =
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R 1) Gpax and Vg depend equally on g, o2 and o3. :;;‘;
. 11) For a shear wave propagating in the sand, the value of Vg is the same X :‘_':
< whatever the directions of propagation and polarization of the wave. E‘_:;E
_: Implication ii) is equivalent to assume that, at very small strains, the E:EE:

- anisotropically loaded sand can be modeled as an isotropically elastic mater— :ﬁ
E ial, defined by the two elastic constants Gy, and Poisson's Ratio, v. Under 3
5 the usual additional assumption that for a dry sand, v = 0.3 to 0.4 is a {:::-

i :‘ constant independent of confining stresses, a set of implications similar to 1) ;‘I‘
“:: and ii) can be obtained, but now for a dilational, P-wave, travelling in this —;

) ’ dry sand. If we call D, Vp the constrained modulus and P-wave velocity, the

) f corresponding implications are:

; 1ii) D and V, depend equally on o}, g7 and o3, with D m(co)o'5 and Vp
8 a(0)0+25,

iv) The value of Vp is the same whatever the direction of propagation of

the P-wave.

p :}._: Five recent experimental studies have attempted to verify in detail this
! formulation by Hardin/Richart and Seed/ldriss, and specifically the validity
= of implications i) through iv) above for anisotropically loaded dry sand.
: Schmertmann (1978) measured V, and Vg in several directions in a large dry
“ sand specimen (4 ft diameter by 4 ft high). In these tests, a biaxial state of :i',,,
-: stress could be achieved, o} = o, # 07 = 03 = op, with oy, oy = vertical, hori- \:J:_:.
' o zontal stresses, with the stresses varylng between 5 to 20 psi, and with a '&g:‘:‘
I stress ratio, 0)/g3 = ! to 3. He found that there was a slight amount of inher— -
¢ E- ent anisotropy (different wave velocities In the horizontal and vertical direc :E:
- PO
. tions when g, = o). He also found that for constant oy = 1/3(g, + 2 op) and E:?}.
i: variable ¢)/03, Vg varied less than 10%, thus verifying the basic Hardin/Richart "5
;: agsumption as a first approximation for Vg in this bilaxial case. However, Vp :::
- :':‘

" 49
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was strongly affected by o]/03. The results suggested that, for P-waves propa-
gating in the vertical direction, Vp depended more on o, than on o,4.

Roesler (1979) measured Vg using a 1 ft3 cubical dry sand sample. In
these tests, a true triaxial state of stresses was achleved. Test pressures
ranged from 5.8 psi to 23 psi, with oj/03 = 1 to 1.8. He propagated the
shear waves along either of the principal stress directions (oa), with particle
motions polarized in another principal direction (op). The third principal
direction, or out—-of-plane direction, is neither a direction of propagation nor

polarization (°c)' Roesler found that his results followed the law:

i
Vg = B oa0.149 Ob0.107 °c0 (3) :}
k.
N
where B = constant. These results are illustrated in Fig. l. For isotropic T
LSRN
-~
confinement (0,=0g=0p=0.) they do confirm the Hardin—Richart law that Gp,, N
a(oo)o'5 and Vg a(oo)o'zs, as 1.49 + 0.107 = 0.256, However, for the general F

Av s

e

case, Eq. 3 contradicts Eqs. 1-2, in that now Vg is completely independent of
Oce Also, Roesler's results for this case indicate that Vg is a function of
direction and the sand cannot be treated as an isotropic elastic material;
therefore, more than two elastic constants are necessary to define it.

Stokoe et al. (1980) developed at the University of Texas at Austin

(U.T.) a large scale, 7 £t3 cubical triaxial facility, for the specific pur-

." 4 1‘_ v

Y

NN

pose of measuring Vg and Vp in dry sand. 1In this facility, a triaxial state ; -:
’
'
of stress, o] # o) # 03 can also be achieved. All tests performed to date -
A\
at U.T. have used a local medium to fine, washed mortar sand classified as SP, 4
with effective grain size, Djg = 0.28 mm and a uniformity coefficient C, = 1.7, 2i
o
The sand is placed by the raining technique and is tested dry. Values of e
~',
L,
principal stresses used have ranged between 10 psi and 40 psi, with the stress _?
ratio, 0)/g3 = 1 to 4. Knox et al. (1982) used this facility to study Vg and, ff'
R
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similarly to Roesler, they propagated the shear waves along one of the
principal stresses (og,), and polarized parallel to another principal stress

(op). They expressed Vg as:
Vg = F g,m2 Obmb oM %)

where F = constant. They found values of ma = mb = 0.09 to 0.12, and mc = 0 to
0.01. Except for some minor differences, these results are identical to those
of Roesler, including the independence of Vg on g,. Kopperman et al. (1982)

used the same U.T. facility and sand to study P~waves and concluded that:

vy = L g,0-22 (5)

where L = constant. The insensitivity of Vp to variations in the stresses oy
and o, perpendicular to wave propagation is illustrated by Fig. 2. Again, and

similar to Schmertmann's findings, these results indicate that V_ is strongly

p

dependent on direction of propagation when the sand is anisotropically loaded.
Yu and Richart (1984) performed resonant column tests on three sands sub-

jected to a blaxial state of stress. Their results essentially agreed with

those of Roesler and Knox; however, they found some effect of the stress ratio

on the results. They proposed for Gp,yx the expression:
Gmax = CpaO.49 0v0.26 Oh0.25 (l—a an) (6)

where C=constant, Pz=atmospheric pressure, a=0.15 to 0.23, with a mean value of
0.18, Ky=(01/03=1)/[(0}/03)pax~1], and (01/09)pax cOrresponds to shear failure
of the sand. Except for the factor l-a an, which is usually between 0.8 and
1, Eq. 6 is consistent with Eqs. 3 and 4 proposed by Roesler and Knox.
Therefore, all of these results clearly indicate that implications i)

through iv) above, associated with the currently used correlations for Vp and
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§ o Vg in sands, need to be revised and upgraded. In most cases of practical .:j
. :%’:
i interest, sands are anisotropically loaded, and thus more than two elastic e
. Ll
g: ~ constants may be needed to specify the behavior of the soil at very small _-:-::
-P:.. ~ "-f..h
;s e strains. For the typical biaxial state of stresses existing in the field under X
N g >

geostatic conditions, for which all horizontal normal stresses are equal but

<.
vaal
rd e e
;.

",
:E different from the vertical stress, the sand will behave as a cross—anisotroplc :E:
Es :; elastic solid and 5 elastic constants will be generally needed (Love, 1927, ég;;
o Sokolnikoff, 1956). In the more general case of o] # gy # 03, as 1t may happen ‘:i
S? EZ in the soil under a structure, the sand can be described as an orthotropic i;;
EE .. elastic solid, with three planes of elastic symmetry, and a total of 9 elastic 533
.3 .; constants are needed (Sokolnikoff, 1956). j:
a: The previous discussion focused on the elastic properties of sand at very ;E?
E; small strains, y = 107%%, and especially on Vp and Vg measurements. If larger i;l
5 s
E t loads and strains are applied to a dry granular soil, compression—wave type ::
éé loading induces a nonlinear locking stress—strain response, while shear-wave Eﬁ:
- - G
;3 o type loading induces a yielding response (see Fig. 3). This behavior is EE;
.; &_ obviously associated with the particulate nature of the soil (Seed and Idriss, E:;v
é? " 1970; Hardin and Drenvich, 1972). During cyclic shear loading in sand, stress-— 'Jt
-, e
bi :3 strain hysteresis loops are generated such as shown in Fig. 4; these loops are ';ij
iE essentlally strain-rate and frequency independent. For small strains, y < vy, = ;i:
qs 10'22, the hysteretic loop repeats itself cycle after cycle, and no permanent -53
EE g volumetric straln is observed, thus suggesting an essentially non-destructive Si:
- ] Ve
® though nonlinear behavior, controlled mainly by the response of the contacts E':’
ki E; between the grains, and with no coupling between shear and volumetric strains. 1
“ At shear strains, vy > Y., although the overall behavior remains approximately ;;ﬁ
‘j the same, densification occurs, and there 1s also some increase in stiffness, f;

with the shear stress—straln curve and the tips of the loop going up a little
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as the number of cycles increases (see Fig. 4). For the strailn range

0.01%Z < y < 0.1% to 1%, the monotonic and cyclic behavior of the sand is always
contractive, that is, shear stralns generate exclusively compressive volumetric
strains, independently of the density of the sand. However, for strains larger
than about y = 1%, a mixture of contractive and dilative behavior 1s measured
in dense sands, with expansion of the soil occurring during part of the cycle
in c¢yclic shear loading (Youd, 1972). At all strains, and for both shear and
compression—type cyclic loading, the stress~strain response of dry granular

soil is strongly dependent on the level of normal stresses acting on it.
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Section 3

STRESS—STRAIN MATHEMATICAL MODELLING

A significant amount of research has been directed to obtain stress—strain
constitutive relations for cyclic and dynamic loading of soil. Most of these
studies have modelled the soil as an elastic-plastic material, using as a basis
tool the Incremental Theory of Plasticity. In this type of model, which is
particularly appropriate for dry granular soil, the total strain increment is
equal to the sum of elastic and plastic strain increments, deij = daij+ deij,
with all de being strain rate independent (Drucker and Prager, 1952; Reyes,
1966; Chen, 1975; Lade and Duncan, 1975; Prevost, 1978; Hardin, 1978). Based

on the Vp measurements by Roesler previously described in Section 2, Hardin

e
(1980) suggested the following expressions for dsi. in dry granular soil:
J

F(e) % , doy day do,
deyg = ! -V - v )
-n n n n
P, Sxox Syoy S,0,
e 2(1 + v)F(e) = dtyy
drxy =77 /2 2+ )
-n n T n
Pa’ ™" Sxy 5uo - Iyt R
X~y cxdy
e e e
where ¢ = normal strain, vy = 2¢ = englineering shear strain, and four
X Xy Xy
additional equations are obtained by permutation of subscripts. 1In these
equations, 7,4, 3, and 3, = normal stresses; Txy = @ shear stress; Pa =
- 2
atmospheric pressare. and Fler = i3 + 0,7 e, where e = voild ratio. Egs. 7
contain five viis®: HSTANLs TN Sy, Sz, Syy and v); based on Roesler's
experimental v ress "~ 4 Lower ot stress n = 1).5 was proposed.
A variesy 5t oass . ace and aonassociated flow roles have been proposed
for the plastic s:ra:n ioorement, ot the form:
11
. "\-'. PR . -'u'.".'—r'l . " - - [N - .'.'. DR - .“‘.V‘ ,-'_'.' .'-“' ._I\_..,, > .-'.‘
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where A = coefficlent of proportionality, and g(cij) is the plastic potential
function, which may or may not coincide with the yield function f(oij) at which
plastic strains develop. Figure 5 shows the shapes of a number of plastic
potential surfaces proposed for soil by different authors.

In the simplest type of elastic-plastic model, there is only one yield
(fallure) surface. For stresses below that surface, the behavior is assumed to
be perfectly elastic. However, granulér and other soils develop plastic strains
even at the small shear strains of interest to this report. To allow for
this behavior, a wide variety of strain-~hardening laws have been proposed,
including families of yield surfaces and specific strain-hardening yileld rules.
In some of these models, the elastic region is completely eliminated, thus
allowing for plastic flow at very low levels of stress and strain (Mroz, 1967;
Prevost, 1977). One of the earliest developments included various cap models,
based on the work done at Cambridge University by Roscoe and his co-workers
(i.e., Roscoe, 1970). This includes the models proposed in several papers by
DiMaggio and Sandler (1971), which have been widely used for dynamic analyses
of soill response to explosions. Several capped yield models are included in
Fig. 5.

An important aspect of the development of elastic-plastic models is the
definition of the strain—hardening law, which defines the modifications of the
yleld surface(s) in the course of the plastic flow. This is especially
critical for cyclic loading, where the type of straimhardening determines the
stress—strain behavior after load reversals. In most of the models described
above, which were originally developed for monotonic loading, isotropic strain-

hardening is assumed (Hill, 1950), with the yield surfaces expanding as the

- . . L O O L I
T S M S LR S S DR S

\", ".\'*.'rs"\": .
= i

N

R s,
T P

'v‘l"‘

'

N3

Y

by

P
LI

AR

i e e e A e e . e
B T e i e T e e T L A L
N A e N A S R S P N D N N A A O



[y Tk A

Cha s, rd

AL

oA

-i

NN

T T o e T T AP

13

stresses Iincrease (Fig. 6). When isotropic hardening is assumed, a large
amount of load reversal is required for additional yielding to occur, in con-
tradiction with the observed behavior of experimental hysteresis loops such as
shown in Fig. 4.

A better alternative for earthquake loading is provided by the kinematic
straln-hardening law, sketched in Figure 7. The kinematic model was originally
proposed by Ishlinsky (1954) and Prager (1955). 1Iwan (1967) proposed a reo-
logical representation for the stress—-strain model, constituted by infinite
elasto-plastic elements, placed in seriles or in parallel. This model is a non-

frictional one, with all the nested yield surfaces being circular cylinders in

principal stress space. Mroz (1967, 1969) proposed a general model for elastic-
plastic materials, composed also of a field of yileld surfaces, with a combina- T;:;

tion of kinematic and isotropic strain-hardening laws. Prevost (Prevost and

Hoeg, 1975; Prevost, 1977, 1978), Mroz, Norris and Zienkiewicz (1978, 1979) and

LR

Vicente and Dobry (1985), have proposed to use this model to predict static and

A '.m.‘ .
;

l’("'[

[

cyclic behavior of soils. The model is flexible enough to allow its adaptation

)‘ 1" « ':“
g N

to the cases of drained and undrained loading, and to incorporate important

l_f\

large strain cyclic phenomena such as densification, liquefaction and stiffness

degradation. Anisotropically loaded soils are represented by nonsymmetric

nested surfaces in stress space. Under cyclic shear loading, the strain—harden- Efw
ing behavior is basically kinematic for the reasons described above. A simul- ﬂ}ﬁf
R
taneous isotropic hardening (or softening) is allowed with the corresponding T
RREGE
expansion or contraction of the yield surfaces as cyclic loading develops. This Eﬁ__
\.'.'-'
o
isotropic expansion {contraction) thus could simulate f{n dry granular soil the ::;a
LY
NENCE
observed increase (f stiffness caused by cyclic loading above Ye = 1072%. A
NN
>
ST
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Section 4

v e
.

THE MICROMECHANICAL APPROACH

Eqs. 1-2 for Gp,x and similar expressions for other small strain moduli in

dry sands assume that the controlling normal stress parameter is the mean stress

v e v

Oo: Gpax = f(oy). This functional relationship, selected on the basis of o
A
limited experimental evidence, was no doubt influenced by a continuum mechanics (:i
fd .h
Q\-l
view of the situation, as o, is proportional to the first invariant of the ;2*

stress tensor. As discussed in Section 2, more detailed measurements have

revealed the elastic anisotropy of a dry sand subjected to different principal

stresses, and they have also shown that the functional relationship between i:i
principal stresses ¢), o3, 03, on one hand, and Gp,, and other elastic constants ::2
on the other, is not Gy, = f(o,) but rather Gy,, = f(g,,04); similarly, for :SE
the constrained modulus, D = f(g,). Derivations shown later in Section 5.1 %§'
for a simple cubic regular array of elastic rough spheres match very well with iji
those recent experimental findings in sands. This strongly suggests that a SES
micromechanical (particulate mechanics) approach should be used to analytically SE_
simulate and generalize the experimental observations. f;ﬁ
e

A great number of studles have been performed using particulate models to ;i:
understand and model the behavior of cohesionless soils and other granular ;:E

materials. Most of these investigations have been analytical, but they have :3}
also included measurements in actual granular soils, as well as in regular or ::j
random arrays of spheres (3-D) or disks/rods (2-D); a number of them have A

dealt with the load-deformation characteristics at the contact between two

oy

N

elastic bodles possessing friction (Mindlin's problem). State-of-the-art :y?
<t

summaries have been presented by Deresfewicz (1958, 1973), Mogami (1965), E:%
—3

Scott and Ko (1969), Richart et al. (1970), White (1965), Harr (1977), and 'f
14 .
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Dobry and Grivas (1978), between others. The proceedings of two US/Japan
seminars on the mechanics of granular materials contain excellent papers on
the subject (Cowin and Satake, 1978; Jenkins and Satake, 1983).

A number of these studies have focused on the probabilistic aspects and
statistical distributions of different parameters within the soll or granular
medium, and their effect on the mechanical behavior of the array. These have
included investigations of the orientations of the individual particles, of
the spatial distribution of porosity, and of the distribution of number,
orientation and levels of force transmitted by the contacts, conducted between
others by Smith et al. (1929), Dantu (1957), Field (1963), Mogami (1965),
Grivas and Harr (1974), Oda (1974), Yanagisawa (1978), Shahinpoor and Shahrpass
(1982), Nemat-Nasser and Mehrabadi (1983), and Dobry and Petrakis (1984).

Many of those analytical investigations, computer simulations and obser-
vations have focused on the stress-strain behavior at very large strains and
on the failure of dry granular media. Because of this very large strain
nature of the phenomena, the load-deformation characteristics of the particles'
contacts have played a minor or negligible role, and the emphasis has been on
changes in the geometric arrangement of the grains due to their sliding and
rolling. In some of these investigations the compliance of the contacts has
been eliminated altogether by assuming perfectly rigid particles. Some impor-
tant references here are Rowe (1962), Morgenstern (1963), Horne (1965),
Konishi (1978), and Oda et al. (1983). Cundall and Strack (1983) performed
numerical experiments of 2-D random arrays of disks using an explicit finite
difference procedure (see Fig. 8). In these, the authors successfully simu-
lated "compression triaxial” loading to fallure, and studied in detail the
spatial distribution of contact forces and the distribution and relative con-

tributions of sliding and rolling to macroscopic strain, during anisotroplc
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SO deviatoric loading with constant o3. One of their conclusions for this

N
[‘} ‘. 'n' ‘

’ ic deviatoric loading is that the major principal stress o] is transmitted mainly

o’
it

l'
S A,

by a few "stiff chains"™ of particles having large contact forces, with the

o
"

l.l_‘
;5
P o
a
At

‘.‘:‘ L S
5
Ry
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particles in between chains being lightly loaded; sliding and rolling occurs

mainly in those lightly loaded regions. Oner (1984) worked with a similar

Ef !S numerical scheme to predict the observed threshold strain y. at which sliding g;
;3 - and rolling starts, while Dobry et al. (1982) used a regular simple cubic array é§
A of spheres for the same purpose. 2
E: - Of special interest are the investigations which have studied the stress- i%
!EE strain behavior of granular arrays considering the elasticity of the particles Eis
}%: t: and the corresponding compliances at the contacts. Most of these studies have E?c
S& assumed spherical grain shapes and elastically isotropic grains characterized EE
o - LY
E: by three material constants (two elastic and one friction coefficient). All 33
o’ N
,; E of these investigations have used the normal and tangential compliances at the :’

[od §
“E ‘ contact between two elastic bodies, derived by Hertz (1882), Cattaneo (1938), g&
:~$ Ef and Mindlin and his co-workers (Mindlin, 1949, Mindlin et al. 1951, Mindlin éﬁ
A 2
. c and Deresiewicz, 1953). Figures 9 and 10 show, respectively, the distorsion of ?i
o e >
:? - two spheres subjected to normal (N) and tangential (T) contact loads, and the 35
?S - tangential load-displacement curve for constant N. As noted in the summary E;
. reviews of the contact theory by Deresiewicz (1958, 1973) and Dobry and Grivas :;
;S (1978), Mindlin and his co-workers developed the basic theoretical framework ?S
ii o of the contact problem, and solved it for some special force time histories; %i
. "N
v however, the general problem of computing the displacements for a contact Ei
A + > > ",
Si EE force P = N + T, whose magnitude and direction change arbitrarily, remained E?
ZE . unsollved. Only very recently, Seridi and Dobry (1984) provided a general and EE
. :i practical solution to this general problem, thus making it possible thé use of 2;
e R
fg i' direct stiffness and finite difference techniques to simulate the 3~D response tf
- A -
NS o
~ -
z oy };.;;.;,-. PR S :::.v,-.’-._:.'_. . el p . 2l .-\'.-.;:;-__.-__f, SN AT SR ~\'.-;,:.~ L ;-_::j
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?: -, of granular array at small strains. A more detailed discussion of this general :\:::.':
y : solution is presented in Section 4.1. E:E:
‘ * The contact theory has been repeatedly used to predict the elastic stress- f‘_":
. o
:; Ef strain properties of granular arrays of spheres. Several authors calculated ':‘5
e the influence of isotropic confining pressure on Vp and Vg for various arrays "-‘*f
i H of smooth and rough spheres, and concluded that both velocities increase pro- \
\ . portionally to (00)1/6 (Hara, 1935, Takahashi and Sato, 1950, Gassman, 1951, \
5 o
i White and Sengbush, 1953, Brandt, 1955). Of special interest here are some £
3 ": detailed analytical and experimental investigations of regular arrays of equal E:.-J
<. SR
; ' spheres. Deresiewicz (1958) lists the five stable regular arrays included in -{
!: Table 1 and sketched in Fig. 11, which range from the loosest simple cubic, ::.L.
-:' (void ratio, e = 0.91) to the densest pyramidal (also called face centered EE?
o~ s
:..: cubic array) and tethraedral (also called hexagonal close packed), both with e :::2
, w B
e E = 0.35. More complete lists and descriptions of feasible regular arrays have :!
f-* ] been presented by Filep (1936), Brown (1978) and Shahinpoor (1981). Table 2
.r : reproduces one of these lists containing 31 arrays, while Fig. 12 presents “'
- s
" E elevation and plane views for one of the loosest arrays of Table 2 (Cell No. 2 ;‘:
E: - with e = 1.94). Deresiewicz (1958a) investigated in detail the simple cubic '
:2: ;E‘ array subjected to an initial isotropic loading followed by an arbitrary stress I_:.
" g history. He found that the array is statically determinate in this case, pro- .;,"_
:: \' vided that the stress field is uniform, with a one-to-one correspondence be- ::_::
. N
iz ~ tween the nine components of the stress tensor and the nine independent comr ":\.j
< ve=i
b ] ponents of the contact forces. Whitman et al. (1964) studied a 2-D version of "-'
";: \: the simple cubic array subjected to triaxial and confined compression. Duffy ;_'.;
: ] and Mindlin (1957), Duffy (1959) and Hendron (1963) investigated the densest ::Si:
N ?J arrays of Fig. 11 and Table 1, which are statically indeterminate, including ?;2
: some measurements of compressional (rod) wave velocity, Vi, in stainless steel ‘f.“\:
0
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granular bars loaded isotropically (see Fig. 13). As shown in the figure, the
measured values of Vi, are somewhat smaller than predicted, with the difference
being greater at small values of g5, and with this difference increasing for
the low tolerance balls; at high pressures the measured V| approach the pre-
dicted one. As a result, the observed Vi a(gy)™, where m > 1/6 = 0.167 pre-
dicted by the theory. This difference is explained by Deresiewicz (1958), by
the small differences in size between the actual spheres, which results in the
number of actual, load-transmitting contacts being smaller than predicted;
thus, the array 1is less stiff than calculated. When the tolerance becomes
higher or the pressure increases, the number of these actual contacts also
increases and approaches the theoretical value, and thus the measured velocity
also approaches the prediction. As discussed in Section 2, values of m = 0,25
> 0.167 have also been measured for Vs 1in isotropically loaded sands, most
probably due to the same reason: an increase in the number of actual contacts
as 0, lncreases.

Several approaches have been used to model the effect of deviations from
regularity in arrays of equal or unequal spheres. Smith et al. (1929) pro-
posed considering a random array as formed by clusters of loose and dense reg-
ular arrays, each present in such proportion as to yield the overall void
ratio or porosity; this idea was generalized by Munro and Jowitt (1974) and
Brown (1978), who used the concept of maximum entropy to find the contribution
of each regular array. Ko and Scott (1967) used a similar procedure to inves~
tigate the stress~strain behavior under isotropic compression; in this study,
"holey” models were used in which some of the spheres in both the loose and
the dense regular component array, are slightly smaller than the other spheres.
In this way the effect on the bulk modulus of the increased number of contacts

caused by an increasing pressure, was incorporated into the model. Perry and
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ki N Brown (1981) studied the influence of having different size spheres on the ;$§~
‘: compliance of the array. Davis and Deresiewicz (1977) investigated the com :i%
) pressibility of a 3-D random array of smooth equal spheres subjected to iso- S%E

&E tropic loading. Serrano and Rodrigues—Ortiz (1973) suggested a method for ;?i

. e

. generating random configurations of unequal disks or spheres having a pre- ;
< scribed grain size distribution; their work was continued by the 2-D numerical E;:
g. simulations by Cundall and by Oner, previously discussed. E%{
' 4.1 General Solution of the Contact Problem EEE
v As previously discussed, Mindlin and Deresiewicz studied the problem of Etﬁ
?: the load-displacement behavior of two spheres in contact. In its most general S§i>
T formilation, the problem is to relate an arbitrary force time history ;(t) = iﬁf‘

L; Tx(t); + Ty(t)g + N(t)g, transmitted through the contact (no twisting moments ég;

> - A

- are considered), to the corresponding displacement time history D(t) = §,(t)i Z;;

i= + ay(t)s + a(t); of center 0 of one sphere relative to center 0' of the other ﬁﬁ

ii sphere (see Figs. 9 and 14). T, Ty, 8x» Sy are tangential forces and dis- Egi

- placements, while N and a are the normal force and displacement. Mindlin and ?&
= Deresiewicz established the general framework for the solution of this problem, f;i:

v and they obtained closed form solutions for the following particular cases: 1) ii;

: normal load only, N # 0, Ty = Ty = 0 (Hertz problem); 11) N constant and Ty }SZ

?’ increasing or decreasing with Ty = 0; and 1ii) a normal load N followed by an ;;E

. oscillating oblique fgrce of constant de/dN and Ty = 0. However, the general Ezg

'3 problem of obtaining D(t) for an arbitrary, monotonically or cyclically vary- Eéf

o ing ;(t) was not solved until very recently by Seridi and Dobry (1984). This fﬁ

B solution of the contact problem, which has been implemented by means of ;3

;j currently available computer code CONTACT, is an elastic-plastic lncremental gix

N model, where all yield surfaces are cones of angle f in force space (N, T,, '}1

3 :

g -

R RN S Ty
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< g
Y Ty), see Filg. 14, The coaes translate without rotation and without changing -
.\:.:j
li their shape or size (kinematic strain-hardening), and the current positions of 2l
> i,
: the apexes of the cones reflect the prior force history P(t). A modified form :::'
. > iy
23 of the normality rule is applicable, and the displacement increment dD is :::‘
ik NN
computed as: v
- :-'__I
':\.‘
> dN(l-vsz)a - N ~ dT, - A
d=——fF —k*rfp nty—t (9 N
& s o] e Ay
- v
- where Eg, vg, f are the material properties of the spheres, a = radius of ';}
contact area between the two spheres, H, H,, H, are tangential elastic and fﬁti
%; elasto-plastic moduli, and dTg, dT,. are the outward normal and tangential com ?3?
- ponents (with respect to the yield surface) of the applied tangential force Llﬁi
e > > > S
- increment dT = dT  + dT.. As demonstrated by Seridi and Dobry (1984), this T
iﬁ elastic-plastic general model reproduces identically all equations developed :fi;
by Mindlin and Deresiewicz for all thelr particular cases of loading, and £i§:
. > + ATRE
‘ . -
:3 allows computing D(t) for any arbitrary P(t). ::j:
\.',:."
C The availability of this general solution to the contact problem is crit- ;)"
N ical to the mathematical modelling of the small strain stress—strain response A
\.’:‘:'v.
ﬁj of a granular soil by models of spheres. The existing program CONTACT relating AN
' » t-
- > > o«
P and D can now be used as a basic tool, in conjunction with direct stiffness ?*i
:;: or finite difference techniques, to study the behavior of either regular or j: B
. random arrays of spheres. :3“;
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o Section 5
] - DIFFERENTIAL STRESS-STRAIN RELATIONS FOR REGULAR ARRAYS OF SPHERES
N The general solution of the problem of the contact between two spheres can
N
. e be used to derive incremental stress—-strain relationships for regular arrays of
L) spheres. These stress—strain relationships are discussed in this section, with
‘o
) particular emphasis on the behavior under isotropic loading followed by very
:3 small but arbitrary stress and strain increments, and for the following regular
A arrays:
i) simple cubic array (sc, see Figs. lla and 17), discussed in Section 5.1
3 B N
I ii) body centered cubic array (bcc, see Fig., 15); discussed in Section 5.2 E ok
%
- iii) face centered cubic or pyramidal array (fcc, see Figs. 1ld and 16); :ﬁ
‘\‘ .
DA

discussed in Section 5.3

‘I
%
"

.
090

iv) cubical tetrahedral (ct, see Fig. llb) and tetragonal-sphenoidal arrays

'-
g

v
o

o+ ¥ S
[}

Pa
(ts, see Fig. llc); discussed in Section 5.4. AN
A A A
R el
A < Q:\
. . . . . -
Most of these incremental stress—-strain relations were taken from Deresiewicz :a:f‘
S (1958), Duffy and Mindlin (1957) and Moklhouf and Stewart (1967). However,
. some are new; in particular, the body centered cubic array is discussed here
Y
Y .
u for the first time.
\ t; In addition to the five regular arrays listed above, a sixth regular array
s
is the hexagonal closed packed or tetrahedral array (hcp, see Fig. lle, see
-
-
ot also Deresiewicz, 1958). Table 1 lists the most important parameters of all
. w
. six arrays. A comparison of the behavior of the sc, bcc and fcc cubic arrays K
e is presented in Section 5.5. :
= 21
-
-
‘;J;:'.;-;:_n:_::'::_-;_-.\"a;'_-;;‘:-\"-\'_--;_-::.-;‘.a;:}::_ﬂ ::1--\";:.-'\'.. \'.:-.::.;‘ _.‘!-.;‘“-;:'.;'..;'._.;“._*: ..~‘.;. '.- _ N R -.'_: _;’--:_\;“.;‘x :. . . .:,\'.-,-..\\-\.. ‘-‘:'J ~..\.-_- “
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5.1 Simple Cubic Array (sc)

The simple cubic array sketched in Figs. lla and 17 is the simplest of all
regular arrays of equal spheres. One sphere of radius R represents the whole
array, and for a uniform stress field this is a statically determinate system
with a one-to-cne correspondence between the array's stresses and the contact
forces (Deresiewicz, 1958). If the normal stresses parallel to the axes of the
array are gy4 (i = 1,2,3, see Fig. 17), the normal contact forces N; are: N; =
4R2 Uii(*)' If the shear stresses parallel to the axes of the array are oy
(1, = 1,2,3 and 1 # j), the corresponding tangential contact forces and Tij =

4R2 ofje These relations occur due to equilibrium and are independent of the

previous history of stresses. Therefore, they are also valid for any stress aand & -
force increments at any stage during the loading, provided that no gross sliding :ifﬂf
o3

_ _ 2 1o ".4‘ -,

of the contact has taken place dN;y = 4R2 Giis dTij = 4R doij' Figure 17 i1 ?:;;:
lustrates ~he case in which an anisotropic state of stresses is applied first, g;”“’
I

T

with all 01y = 0, followed by small arbitrary increments doy4 and dcij. E;e:
f -

. J.:- :-

A similar set of simple relations is valid in this case between the array Eg N

{ .f} S

strains and the displacements between spheres; these relations are obtained for L

LA

a uniform strain field based on simple geometric considerations. If ay = normal ;:i}
R

relative displacement of centers of the two adjacent spheres separated by con- f?l:
e

tact i, and 5ij’ §4k = tangential relative displacements between the same two o
centers, then: ey = ay/(2R); and vy = 2e55 = (845 + 831)/(2R), where g4 = 32;;
normal strain, and Y1y = engineering shear strain of the array. Again, all ;5&5
these relations are independent of the prior history of strains and are valid ‘;;
RN

for incremental displacements and strains. ;“?‘
. .“- "\ ;

"'::f:

:('-.’\

Nt

ik

(*) Indicial tensor notation is not used here, that is, ojy4 does not imply a
sum of several terms.

---------
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e The elastic stiffnesses corresponding to small stress and strain incre- .
F. -
[d "
! ‘ ments applied to the array subsequent to an isotropic stress state, o¢]] = 022 =
< .*,\.r
. 023 = 0g, 0ij = 0 are: AT
- ’_'-.'-
( "l‘ .:;.‘-:-
-:‘. g T - -1 B T ;;:.-
. da] } S1111 0 0 0 0 0 deyy -
2 > dago 0 82222 0 0 0 0 depo \‘
P do3s3 = 0 0 $3333 0 0 0 dejj (10) o
i ) dajo 0 0 0 S1212 0 0 dey2 e
AR 3
A do)3 0 0 0 0 51313 0 del 3 o
e ) DA
. dosj 0 0 0 0 0 $72323 depj g
E '!". - J - <4 L . el
- .
ok
. 3
-
P 1/3 1/3 2
. 3 -2/3 2 A
N where S1111 = 52222 = 83333 = () {1-vs) (o0Cs) St
) o cen s
l i (11) s
S 3 1/3 2(1~vg)1/3 5 1/3 e
S S1212 = 51313 = 52323 = () ~zm, 7 (0oCs) i
i _ :"f..--'v
R :‘i':*
:: Notice that the stiffness matrix is diagonal, and therefore the Poisson's :::,
~ - :-:...F
:: : ratio of the array, v = dejyp/dej; = 0, for "triaxial” loading corresponding to -:.\‘,:
A KA
E increasing o)) and constant o3 = 033 = o,. The array has a v = 0 quite e
I N
K “w e
R independently of the values of o, and vg (see Fig. 20). AL
. NN
e Note that, for a given g,, Eqs. 10-11 describe a linearly elastic \;
W - -7,
L] anisotropic medium. The necessary and sufficient conditions for this medium to !‘ g
.: - _..:-: .
':: ,_f be isotropic are of the type Sjj11 — S1122 = S1212. These are satisfied only ::-_\'.,
R A
‘;:- , for a Poisson's ratio of the spheres, vy = 0. This assumption results in an PNy
|": T'-l !J:‘\j:
. isotropic medium with v = O. \’ .
s 'u*
: LSS
.:: : For the case of an anisotropic state of stress, o)) # 022 # 033, o35 = 0, ::':.\.
I o
"
_
'.'o' -,
.4'
re
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the coefficlents become:

3 1/3 _ 2.1/3
S1111 = (;J (1-vg)™%/3 (01)6s)

3 1/3 _ 2 1/3
§2222 = (;J (1-vg)72/3 {0726) - (12)

3 1/3 _ 2 1/3
S3333 = [;J (1-vg)™2/3 (033Gs)

62/3

3 1/3 , (1=vg)1/3 s
Siii5 = 4= ;0 1#] 13)
1j1j tzJ 2-vg L 1/3 L 173 b (

=) * (5

011 933

where Gg and vg are the shear modulus and Poisson's Ratio of the material of

s
the spheres.
The array locks under “"triaxial™ conditions (0]} increasing with o2 =

033 = g, = constant), while it fails in pure shear (012 increasing with all

other do 0). Because the stiffness matrix, [s], in Eq. 10 is diagonal, the
corresponding diagonal compliance matrix 1is [C] = [s17!, with each compliance
being the reciprocal of the corresponding diagonal stiffness term. That is,
Cii41 = 1/Syy44 and Cyj35 = 1/S1j515, and {de} = [C] {do}.

In this simple cubic array, and again for the case of isotropic loading,
Gif = 0jj = Okk™ 0o’ for P- and S-waves propagating along principal axis I of
the array (and, for the S-wave, polarized parallel to principal axis j), the
wave propagation velocities Vp and Vg are proportional to (00)1/6, and thus,
the corresponding constrained and shear moduli, D = prz = dcii/deii and,

2
Gmax = pVg = dogj/dysj, are both proportional to (00)0'33. As discussed in

Section 4, a similar dependence of modulus on (cvo)o‘33 is also predicted for

other regular arrays, while laboratory measurements on regular arrays and
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solls indicate that Gpgzy a(oo)o's.

For this same case of isotropic loading and for a cublc array of quartz

spheres, and if the array is loaded in pure shear, doij = doji, then a thres-

CRANSL SEREEENR ' Fy PP, el

E: hold shear strain, ye = 4.5 x 1073, (0g)2/3 is predicted (see Appendix B).

- This expression was obtained using the properties of quartz listed in Table 3

§§ with g4 in psi and vy, in inches/inch, at which gross sliding occurs at con-
N s tacts 1 and j, and there is a tendency for a change in the geometric arrange-
X ment of the spheres. This predicted relation between y, and o, for a sc array
.i :; of quartz spheres is plotted in Fig. 21 while Fig. 22 shows the detailed shear
E i stress-strain plots up to the threshold (failure). 1In the range of practical
; S; interest for soils, 500 psf < ¢, < 2000 psf, the expression gives y, = 10747 =
g " IO'ZZ, which agrees very well with the measured Y. in sands as discussed in
E? = Section 2. Expressions for the secant modulus reduction, G/Gp,4, and for the
.
:.—:i i! damping ratio of the array, versus strain increment y = inj were also ob~

tained for a cubic array of quartz spheres (Dobry et al., 1982), and were com
pared with actual measuremeants in sands, with good agreement. The correspond-

ing comparison for G/Gy,, versus y is reproduced in Fig. 18 for an assumed

A " .- e ". ". .'..'» ". "
[mi

S
+ a4 &

e = 1.5 x 10727,
The more general case of anisotropic loading of the cubic array, with

o1] *# 922 *# 033, 1s very interesting, as this model crudely simulates the

8 SRR

N

Loy

’ f' laboratory measurements of Vp and V4 on anisotropically loaded sands discussed
E in Section 2. For a P-wave propagating parallel to the i-axis of the array,
L4 ",

the predicted expressions for D = doy;/des; and Vp are:

| NS

2 2/3 1/3

: D = [(MH/3/2](Eg/(1-vg)  1(oyy)
R (14)
:’: - V.= (D 1/2
RN p = ( /o)
” o
=
I




"

S

~ N

I o)
LSRN

where Eg, vg = elastic constants of the spheres. Therefore, both D and Vp are
functions only of the normal stress giy4 in the direction of propagation, and
do not depend on the other two array stresses ojj and ogk.

For an S-wave propagating parallel to the i-axis of the anisotropically
loaded array and with wmotions polarized parallel to the j-axis of the array,

the corresponding expresslons for Gp,, = doij/dyij and Vg are:

- [3(1-v§)11/3(Es)2/3 0111/3°jj1/3 (15)
max (2-vg) (I+vg) Oii1/3 + 0j;/3

Vg = (Gmax/p)l/2

Gpax and Vg are functions only of the normal stresses in the direction of
propagation (¢y4) and polarization (ojj), and do not depend on the third, out
of plane array stress opyx. Furthermore, as Eqs. 15 are symmetric with respect
to gy; and o055, the values of Vg and Gpax do not change if the directions of
propagation and polarization are interchanged.

These conclusions for the simple cubic array, that Vp depends only on ¢s4,
and Vg depends only on o4; and 0jj» are identical to the experimental findings
of Roesler, Knox et al., Kopperman et al., and Yu and Richart on anisotropi-
cally loaded sands, previously discussed in Section 2. The symmetry of o4; and
93j in Eq. 15 is also present as a symmetry of o, and op in empirical Equation
4, obtained by Knox et al. from the!r sand measurements.

Of course, Eqs. 14 and 15 cannot be used directly for quantitative pre-

ictions in sands, as they give D « 001/3 and Gpgx o 001/3 for the isotropic
case, while D and Gy, a(oo)l/z in actual sands. It is interesting to modify

Eq. 15 to make it consistent with this empirical fact, by replacing 0111/3,

°jj1/3 by 0111/2, cjjl/z, and then comparing measurements and predictions. The
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new equation is Gpay = Mciio'SOjjO'S/ (oiio's+0jj0'5), where M = constant. It
is useful to specialize this expression for the biaxial case, oiy = 0] = oy,
0jj = Okk = 933 = Op, to be able to compare it with the empirical Eq. 6 ob-
tained by Yu and Richart for sand. If K = Oii/ojj = ¢11/033, the new equation
becomes: Gpayx = No0:25g,0:25[2k0-25/(14k0+5)], where N = 0.%. It is conven-
ient to define the normalized parameter.a = Gmax/(Novo°250h0'25), where G =1
for K =1, The theoretical expression G = 2K0'25/(1+K0'5) has been plotted in
Fig. 19. The corresponding empirical expressionla = 1-0,18 an, obtained from
Eq. 6, has also been superimposed on Fig. 19 for typical values Kpax = 3 and 4.
The trends of the predicted and measured curves are the same in Fig. 19, with
the laboratory results showing a somewhat faster decrease in G as K, increases.
The fact that the crude particulate model used here is capable of predic-
ting the lack of influence of the two stresses perpendicular to propagation on
Vp (Eq. 14), and of the out-of-plane stress on Vg and Gpayx (Eq. 15), as well
as the general trend of the relationship between G ,, and the in-plane stresses
(Fig. 19), is extremely encouraging. The main advantage of the cubic array
used here is its simplicity, but of course this model is still far from repre-
senting real sand. One deficiency (which 1t shares with other regular arrays),
is that in the general case the array itself is inherently anisotropic even
when isotropically loaded (crystal-type behavior); that is, Gpax and other
"elastic"” stress—straln parameters are somewhat different for shear stresses
corresponding to axes which are different from the structural axes (axes of
symmetry of the array l, 2, 3 selected in Fig. 17). However, when the material
of the spheres has vg = 0, the array is isotropic when isotropically loaded.
Also, the array locks when a "triaxial™ test is conducted on it aleng any of

its structural axes, instead of yilelding and eventually failing in shear as it

happens with actual granular materials.
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W o
g EQ:. 5.2 B 5e
MR . ody Centered Cubic Array (bcc) :.;::
4 S The body centered cubic array, sketched in Fig. 15, was the next regular o

.

- ’ array studied. It is also represented by one sphere, and the relations between
_‘: .:-',' stress and contact forces can be easily determined for one uniform stress fleld
L . of interest: 1isotropic loading followed by small stress increments. The coor— “
':: dination number (number of contacts/sphere) is now eight instead of six for the :‘
-, R
, . simple cubic array, and, thus, the computations are somewhat more involved. A
FI v,

procedure analogous to that used for analyzing the simple cubic array can be '_':
:f :' followed, except that it 1s now easier to work directly with the compliance ..;.
o
o matrix, Cyjky, [C] = [S]~ 1 instead of the stiffness matrix [S] used before in \

(. Eq. 10. :'*'
: - For the case of isotropic loading, followed by small stress increments, 5:;;3_-
§ M {C] has the following form:

Vi
..
]

:' B -1 7] ] '.'.:\
. dey Citir C1122 C1133 0 0 0 rdou N
- - ._"q'
T degs C2211  C2222 C2233 0 0 0 doz2 o
Ny RN
= degy | = C3311  C3322 C3333 0 0 0 dazz | (16) > et
L A ":\".’_
50 deyp 0 0 0 Ci212 0 0 dojp O
Lo e
YR depy 0 0 0 0 C;313 0 doy 3 P
} > el
’ - degj 0 0 0 0 0 Ci323 dojj
R - - - 4 L y e
N RS
o -. ]
SRR where '::::::
s W N
- P
] 2 % 1 /3 2-vg ~. 3
S Ci111 = C2222 = C3333 = 5 (1-\»53 —-———1/3 "]
-:: ~ (43 65200)1/3 (1-vg) ;.j:’_:
5 an )
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Ls . 2.
2 A
S RS -.ﬁ
AR 2 e
~ 1 % 1 * /3 Vs RN
A C1122 = C1133 = C2233 = ~ (20175 (1-vg)1/3 s
B (473 6520013 ve e
‘ LI
E (18)
l":
N
3 4 1 2/3 1 2-vg
* *
b C1212 = C1313 = C2323 = — [Amvg) ™7 4
) ot /_3- 2 1/3 4 (l'\)s)‘l/ LI
¢ P (45 Gs Uo) .-'--.
¢ . '.-
' (19) o
2 2 Wy
Notice that, unlike Eq. 10 for the sc array, the compliance matrix [C] in Eq. 16
N ,~-“:-.
X v is not diagonal. However, it becomes diagonal and it corresponds to an .
D 2
isotropic elastic medium with v= 0, if vy = O similarly to that found for the sc 5}:
: Y
v in Section 5.1. For an initial cross—anisotropic or biaxial loading, 033 = o4 +

. g, and o)) = 033 = Jy, followed byarbitrary, small stress increments®, the form

¢
£

P M
e

§ 43*‘ '

ik e BB Bl P Py

&

of [C}] is still that of Eq. 16, and the compliances in Eq. 16 are:

..
4
"-"

 f
ot

Je >

N i
-
1

5 1/3 -1/3 R,
AR 2 1 * 1 Ya * 2/3 Y
N Ciiin = C2222 = C3333 =~ *% ———— [1+3 (53] [ (A=) 7 + of
NN 3v3 43 Gy, 3 % i
A RRv
v Lo
R 2- (20) Ry
> + s i
SRR

:: -~ (1-"5)1/3 .‘-'\q
~ <. ' #\v‘
WY PN

- 1/3 -1/3 O
- _ _ =2 x 1 / * 1 4 1% / * (1 2/3 .:-_.'\-".
oo Cli2z2 = €133 = C233 = —  ————— [1+ =35 [A=ve)™™ - moR
. 2 3% ‘ ..\'q
° - 4/-3 GS Go 4 ‘t\\l
AN <.
.o O
-
- 2-vg 21) Py
0 - —_— TN
[~ 2(1-vy) S
- wonte
- i
g
N e,
. H . m,.:
L See footnote, Appendix A.3. b
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x . N
’3 :E. 1 * 1 1/3 * 1 %a ~1/3 * 2/3 :.'.::‘

" . A

s C1212 = C3y3 = C2323 = [+ (5] (1-vg) ™™ + e
) A 3/ 3 2 3 % wion,

E 4Y3 Ggo, =

P_‘;J‘

L * 2_\)5 (22) :.:.:
B § .'(‘. + _—] ::':":
R (1-vg)1/3 o
' N
”~ “ As it can be seen in the above equations 17-22, Vg and V, are again propor- e
Lo C. -_
:::j tional to (cro)l/6 for the body centered cubic array, since the corresponding ‘
_l moduli are proportional to (00)1/3; this is a characteristic common to all _

o regular cubic arrays (Duffy and Mindlin, 1957, Duffy, 1959, Makhlouf and N
- .~ S
. . e
::. - Stewart, 1967). However, again it 1s possible to modify the exponents empiri- .::..j
.-: - \‘:'
N :é cally, and (00)1/3 can be replaced by (oo)l/2 when measurements and predictions e
. Feading
= o,
P are compared. o
N
NN Threshold strain calculations were performed for this body-centered array e
I" ."‘ -
S i‘ for the case of triaxial loading, starting from an isotropic pressure gq, for 5_-%5
- { =
-~ which the array ylelds and fails (as the array tends to lock under pure shear 'L"i:
L . G
::: :- loading). Again, the threshold strain, Y¢, obtained for the array was a func- ::
", ~ :.a v
- "
", tion of the confining pressure, (00)2/3, and for an array of quartz spheres ;.-_‘,',
N (using properties for quartz in Table 3), Ye = 3.44 x 10™3 002/3, with o4 in :':-:j
* ' v
" W
L psi and vy, in inches/inch. This gives slightly lower values of Y¢ than ob- :,:
o '
- (s O
Lt tained from the simple cubic array of quartz spheres in Section 5.1, y. = AR
S -3 _2/3 o
I 4.53 x 1072 g44/°. The plots for these two expressions of yy are compared in =
A\ “_ !.':1

: Flg. 21, while Fig. 23a) presents detailed axial stress-strain curves up to the -.

VW e

:1" threshold (faflure). For the usual range of values of confining pressure for ;_;‘
- "
::. s solls, both of them agree well with Yo = 102y experimentally observed in KA

. ~ -
) o<
v - sands. A
> Y
L ?:3 The body centered cubic array also has some deficlencies when compared to o
:;- the behavior of actual sands. First, it remains isotropic even when loaded o~y
ACEEES X
., . ~
"o o under anisotropic loads, as shown in Appendix A. Second, in this anisotropic :.;-j
. .
il :
2 g
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loading case the wave propagation velocities are not proportional to the
product of the principal stresses in the directions of propagation and
polarization (as measured in sands), but rather they are proportional to the
mean effective stress, as can be verified from Eqs. 20-22. Finally, this
array locks under pure shear loading, and in fact it locks under a number of
different shear loading paths depending upon their orientations and initial
stress state. However, the bcc array adds to our understanding of the general
problem, as it is a medium dense (e = 0.47) array, located within the range
between the densest face centered cubic array (e = 0.35) and the loosest

simple cubic array (e = 0.91).

5.3 Face Centered Cubic Array (fcc)

The Face Centered Cubic Array sketched in Fig. 16 is one of the two
densest arrays, and it has been investigated by several researchers (Duffy
and Mindlin 1957, Ko and Scott 1969, Hendron 1963). The differential stress-
strain relationship for this medium was derived by Duffy and Mindlin (1957).
The array has 12 contacts per sphere, and unfortunately it is statically iInde-
terminate for most loading situations; as a consequence, closed form solutioas
are available only for the case of isotropic confining pressure. In the case
of transversely isotropic loading a qualitative solution does exist, but the
compliances at the contacts have not yet been evaluated. Computation of these
compliances is a formidable task due to the indeterminacy of the problem and
the variation of the forces from contact to contact.

The incremental constitutive law under isotropic confining pressure was
used by Duffy and Mindlin (1957) to compare the theoretical and experimental
rod wave velocities through a bar composed of face centered cubic arrays of

spheres (Fig. 13).
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I
SN For the case of isotropic loading o3y = oo, followed by small stress
Cd
) s increments, doij, doij, the stiffness matrix has the form shown below:
( ‘
. "' aad — oo '1 F ——
R, g doy) S1111 S1122 S1133 O 0 0 dej]
)
N\
s X do22 S2211  S2222 82233 O 0 0 deg)
N dog3 | =| 83311 S3322 S3333 O 0 0 dezz | (23)
'\.‘ doyo 0 0 0 S1212 0 0 de) g
AY
16 N

’ doy3 0 0 0 0 51313 0 dep3

dogj 0 0 0 0 $2323 dezj

REALASOL
A\ '1.
—
|
—
O
\
i
T .‘,.'.'-“'-“.l,
P ] (
D ol G L SN Y R

“
T,
PR

>

P~ r B
I 36 oy P a3y b,
K Si111 = 82222 = 82323 = [ ] * 75 (24) o
N 2(1-vg)? s NN
‘.: ,‘_';'_'_.j
~ if 2 1/3 kS
" 3Gg ag . Vg v
-. S1122 = 51133 = $2233 = [——— I¢EN) (25) e
e 2(1-v5)? T
l.j _'. "‘I"E
s -.‘11
2 ;
< 362 oy M3 43, =3
- S1212 = 51313 = 52323 = [ * oD (26) o
. 2 s o~
N . 2(1l-vg) e
S et
‘:A "¢ ,::4‘-:‘
ATa
Similar to that discussed previously for Eq. 16 and the bcc array, the stiff- _
L 4-\‘.-_1
Y . LS
S ness matrix [S] in Eq. 23 becomes isotropic and diagonal only if vg = 0, 1In -::‘.-“
" AN
" e that case, all diagonal terms are identical and equal to: ;:
- .\ Y,
.
r 2 1 ey
-;' :\ 3Gg 04 /3 e
s 22— (22) e
yd { 2 TS
o -‘_,. v
i r.- .i::;'
.4 and the Poisson's ratio of the array is v = 0. _,,._,:
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If the face centered cubic array 1is consolidated under a transversely isotropic
state of stress with o]] = oo + 05, 022 = 033 = dg, and 0]2 = 013 = 023 = O,
the situation becomes more complicated, since in the case of a non lsotropic
loading the forces vary from contact to contact and each compliance is differ—
ent. To obtain a stress—strain relation for an anisotropic loading path, the
derivation must be performed anew, distinguishing between contacts with
different loading historles.

The differential stress strain law for this case appears in great detail
in the original paper by Duffy and Mindlin (1957); it is identical in form to
Eq. 23 , except that now the expressions for Sijkz are not known. Thurston
(1958) extended the results of Duffy and Mindlin to a set of 18 equations and
18 unknowns.

The fcc array was subjected analytically to the conditions of a triaxial
test by Brauns (1968) and Brauns and Leussink (1970), who derived theoretical
expressions between stress and strain at finite levels for an array of glass
spheres (Fig. 23b). These expressions were later compared to experimental data
obtained in triaxlal tests on regular fcc packings of glass and steel spheres
(see Appendix B3).

Thurston and Deresiewicz (1959) derived expressions for the uniaxial com
pression of an fcc array when applied concurrently with a related isotropic
pressure. Agaln, the theoretical results were compared with experimental
results obtained through compression of bars of steel bearing spheres arranged

in fcc array, with good agreement.

5.4 Cubical-Tetrahedral (ct) and Tetragonal-Sphenoidal (ts) Arrays

The elastic constants relating stress to strain increments for the Cubical

Tetrahedral and Tetragonal Sphenoidal arrays that have been consolidated
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=, o
:‘ :‘f isotropically were derived by Makhlouf and Stewart (1967). The procedure for 0t
~ Ny
ol
2 determining those constants 1s the same as in the other arrays described in L
Y detail by Duffy and Mindlin (1957). 4]
~ \)‘-
‘ [ \\.n_
~ ;; The corresponding constitutive law for the Cubical Tetrahedral array has t:ﬂ
- N R
" SN
the same form as Eq. 23, but now -
L‘; l."ﬁ
LSRR o
: - ) _\}\
™ 2 1/3 s
S B _31/30U+3k) « (3 Ggog s
» N S1111 = S2222 = Tk by ] (28) DN
AR 2 (l-vzj s
]
x
5 .' /3 :-..::
-~ 2 1 o
. 4 1/3 3 G g .:$.|
" $3333 = (= * ____s___o_] (29) :-',‘J‘
N 2 2 (1-v2) s
" 1) s :
e K,
. N
N
o
.
. 1/3 2 1/3
A _3 / (1-k) % (3 _Gs% 3
: S1122 = = 5— (30)
. (1=ve]
- ]
‘“:x
> -
e
OO 2 1/3
y /3 (1+k) .1/3 3 Gsoo
51212 =T3 *2 % [‘———_J (31)
° C 2 LI-VZJ
. ]
’~
- 2 1/3
I _ 2*31/3 x 3 Gs0p /
$1313 = 82323 = ~5¢ by (32)
. o U-Vz)
S s
-:‘ ~,
° A
NN 2 - vg
y ?i where k = E?TTKZ;Y (33)
- As we can see from the above equations, the Cubical-Tetrahedral array differs
; from the simple cubic, the body centered cubic and the force centered cubic
I
od arrays In that it does not exhibit cubic anisotropy, but rather transverse
. - or hexagonal anisotropy, as is also the case of the Hexagonal Close Packed ?jﬁ*
{ - S
) . p
7 N
N b SN
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f -: array (Duffy, 1959) and of the Tetragonal-Sphenoidal Array. :Q}
N ..;‘_-
Y Ii The constitutive law for the Tetragonal-Sphenoidal array appears also in T
8
M Al Makhlouf and Stewart (1967). However, not enough detail is provided in this o
o e
) ~; . . S
,: hf reference for a full understanding of the results, which are quite complex, iri
Ny
IS
R as the representative unit prism is not symmetric. Unfortunately, the g
| . f
.$. -."
X RN original reference (Makhlouf, 1963) could not be found by the authors®, thus :{:
. By
R preventing a better understanding of this array. R
o Je RSN
N N -_“,.- 3
- . 5.5 Comparison of Different Cubic Arrays -
S -
DD The analytical results on the three regular cubic arrays discussed in A
- W~
~ . oL
e .E Sections 5.1-5.2-5.3: simple cubic, body centered cubic and face centered o
; { -
o
N cubic, were compared as part of the current research. This was done to gain %ﬁﬂ
o S
o a -
;: - further insight into the behavior of granular media, and as a necessary inter— \j\
- %
-

mediate step toward the investigation of more elaborated and realistic partic- ~
»

) AT
T el

ulate models. -;J

N All these arrays generally exhibit cubic anisotropy (crystal-type 3y
D :ti':
N behavior) under an isotropic confining pressure g,. In the three arrays, it }ﬁ}
+

X E? was found that the necessary and sufficient condition for the array to become ;i}
~ A
: o isotropic under g, is for the Poisson's ratio of the spheres, vg, to be equal 3:3.
s 23
h . ‘fl. <
~ - * ':J:
3 - The differential constitutive laws for the cubical-tetrahedral and the tetra- ;{3
- gonal-sphenoidal arrays are either not applicable to our research or they are N
ﬁ - erroneous. As one can see from Eqs. 28-31, contrary to general belief (Duffy $ !
(R 1959), the cubical tetrahedral array does not become isotropic under isotropic )

’ loading. This is a serious deficiency vis—a-vis our research, as sands are F
G isotropic under isotropic load. Consequently, the cubical tetrahedral array R
- will not be used here. As for the tetrogonal sphenoidal array, the results ALY
b - are not complete, and since the representative volume element of this array is ::{;
> not symmetric, completion of the stress strain relation in Makhlouf and RO
) Stewart (1967) appears to be a major task. The inexistence of the primary N

4 source for this array, Makhlouf (1963), made it impossible for the authors to L
.i clarify the above aspects; therefore no results will be used here for the -g-l
o cubical-tetrahedral and tetragonal-sphenoidal array. ::;f
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FEE .
& 3: to zero. If vg = 0, the incremental stiffness (and compliance) matrix for the 3;:
W ALY,
NG o
i three arrays is diagonal. Although the Poisson's Ratio of quartz is vg = 0.15, a
- (Table 3), is certainly different from zero, it is low enough to make this Aﬂtt
,..:“..
af “"vg = 0 assumption”, needed for isotropy, a reasonable one for quartz sands, tf:
43 Y
at least as a first approximation. If vg = 0 is assumed, the Poisson's Ratio et
. I
l.- . ’.--l.
*- of the array is also computed to be v = 0 for the same three arrays. It must NN
;L
PN
} be note that for the range 0 { vg £ 0.5, values up to v = 0.13 are computed :{;'
4_:‘ .'-_‘)
T for the same arrays (see Fig. 20). Therefore, the fact that a value v = 0 e
{ﬂ results for the array as soon as vg = 0 is assumed does not seem to be so far }5ﬁ
N '.’:'-r
off either. It is interesting to note that measurements of V, and Vg by N
S N
K - " A
3 Stokoe and his coworkers on an actual sand consolidated isotropically also v
&
T
" provided a similarly low value of v = 0.10 (Knox et al. 1982, Kopperman et T
~ OGN
~ al. 1982, Lee 1985). In any case, even with vg # 0, the cubic anisotropy of PO
.r.:.'
E these expressions for v arrays is not pronounced; the error resulting from Q.
computing the moduli between the extreme values of vg is smaller than 3.3% :kb'
< g
W ASKS'
" (Duffy, 1959). T
,‘~..’\
The above three cubic arrays starting from an isotropic o, state, were e

loaded statically in triaxial compression or pure shear up to failure, that is

¥

LS
rl “ e
l. -
P

.

j up to gross sliding, and cowmputations were performed and are displayed here for
'

their stress—strain curves and threshold/failure strains (Figs. 21-23). A

ey
a &8

graph of obliquity, o3/0, at failure versus the intergranular friction coef-

o ficient between spheres, f, was also computed and is plotted in Fig. 24. The

)

) curves obtained for the arrays in this figure were also compared to the

:: obliquity obtained assuming the Mohr-Coulomb Failure law:

b

N

~ 922 l1+sing 2 %

. — = - = + { =

4 = I=sino tan" (45 2), with tang = f N
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To be able to fail the simple cubic array in triaxial compression, this medium
was compressed by a force parallel to one of the face diagonals of the unit
volume of the array, that is along a [110] direction (Deresiewicz, 1959).

The same cubic arrays also give excellent results when predicting the in-
fluence of anisotropic consolidation on shear wave velocity; this is shown in
Fig. 25 by a plot of normalized shear wave velocity vs stress ratio K = ¢22/0,.
In this plot, V4 (K) and Vg(l) are the values of the shear wave velocity, Vg,
computed for the anisotropic case (K) and for the isotropic loading condition
(K=1), respectively, for direction of propagation and polarization parallel or
perpedicular to ¢22. The same plot includes data measured by Stokoe et al.
(1985) and Lee (1985) on dry sand in the large cubic testing facility at the
University of Texas, with excellent agreement between the analytical
predictions and experimental data.

The shear modulus at very small strains, Gp,y, computed for these same
three cubic arrays under a given isotropic stress, o,, is plotted in Fig. 26
as a function of the coordination number (= number of contacts/sphere). As
expected, the higher the coordination number, the stiffer the array, with es-
sentially a linear relation between the two parameters; it is interesting that
for a given g, the straight lines in Fig. 26 extrapolate down to zero, suggest—
ing that G, is essentially proportional to the coordination number (a similar
plot appears in Yanagisawa, 1983). Therefore, adding contacts to the spheres
has the same effect on the stiffness of the arrays as increasing the numher of
springs in a system of equal, parallel, elastic springs. A derived plot is the
graph between the shear wave velocity, Vg = (Gmax/p)l/2 versus void ratio and
isotropic pressure o, (Fig. 27a) for the same three arrays. This last figure
is especially interesting, as the trend observed in actual sands is very

similar (compare analytical curves with measured data in sands in Fig. 27b),
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except that the absolute values of Vg in the real soils are much smaller, by a
factor of two or three. For example, for e = 0.47, corresponding to the bcc
array, and o5 = 30 psi = 4,320 psf, Vg = 1,800 fps 1is predicted by the analyti-
cal model in Fig. 27a , while Vg =~ 1,100 fps has been measured in rounded
grained sands. Therefore, Figs. 26 and 27 strongly suggest that the dependency
of Gpax and Vg on void ratio observed in real soils is explained mainly by the
increase in the number of contacts as the void ratio decreases.

Even though the above results are encouraging, the regular arrays are
still very crude analytical models of actual granular soils, and results such
as shown in Fig. 27a are not easy to interpolate to Iintermediate vold ratios.

A significant improved model is discussed in the following section.
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Section 6

A MODEL OF GRANULAR SOIL OF ARBITRARY VOID RATIO

Smith et al. (1929) found experimentally that a random arrangement of
equal spheres, after enough shaking and tapping has been applied to it, seems
to be composed of regular arrays, representing dense and loose clusters
distributed within the random grandular medium. The measurements showed that
all spheres had between 6 and 12 contacts per sphere, which corresponds exactly
to the theoretical range for regular arrays.

Additional experimental work by Bernal and Mason (1960), Bernal et al.
(1964), Scott (1960), Scott et al. (1964), Davis (1974) and Shahinpoor and
Shahrpass (1982), Finney (1983), Figs. 28 and 29, has confirmed that 2-D and
3-D random assemblages of equal spheres tend to crystalize. Consequently, at
the present time, it is generally accepted that an assemblage of equal spheres

can be modelled by a combination of regular arrays, Finney (1983), Backman et

al. (1983).
” In this sectlion, a model of granular soll is proposed which consists of
Ei clusters of the three cubic arrays discussed in Section 5.5, with the addi-
< tional assumption that the spheres have vg = 0. 1In this model, the three cubic
E' arrays, having different void ratios and inherent stiffnesses, occur in pro-
:; portions such as to give the desired macroscopic vold ratio of the "soil”. In
. Section 6.3, the relation between Gp,,, voild ratio and o, applied to the "soil”
;& is calculated using the self consistent method, and the results are compared
- with Gy, measured in actual sands.
- 6.1 The Self Consistent Method
T} One of the most commonly used procedure for describing the behavior of
I~ macroscopically isotropic composite elastic media is the "Self Consistent
e,
} 39
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i . This "Self Consistent Scheme"” was first devised by Hershey (1954) and CN
:i b Kroner (1958) as a means to model the behavior of isotropic and anisotropic
-
; $; polycrystalline materials. Such materials are just one phase media, but be-
cause of the random or partially random orientation of the crystals. They are -
- "-1-
;i heterogeneous, the elastic properties vary with position within the medium and j%ﬁ
W discontinuities in properties exist across some crystal interfaces. ﬁﬁ?
¢ In these original applications of the method to polycrystalline aggregates, -
jf a single anisotropic crystal was viewed as a spherical or ellipsoidal inclusion o
within an infinite medium; this i{infinite medium had the (still unknown) iso-
.
f; tropic elastic properties of the aggregate. Then the medium, with the inclu- )
. sion in it, was subjected to a uniform stress or strain field applied at large ;Q;:
- distances from the inclusion. Next, the orientatlon average of the stress or
i‘ strain in the inclusion was assumed to be equal to ("consistent with") the o
N
corresponding applied value of stress or strain. Thus the "self-consistent” o
- AN
:3 name of the method. This formulation provided enough equations to solve for ::if
-:.‘-
" the isotropic effective properties of the medium (Christensen, 1979). -
- Improvement of this self consistent scheme and its extension to multiphase ﬁf:
e
t} media are due to Hill (1965) and Budiansky (1965), who developed the method to :}ﬁ}
. r\'_:_
be used here. This improved method represents an approximate analysis for the ,
R
- prediction of the overall (macroscopic) elastic moduli of a multiphase medium j{;
% composed of a coherent mixture of several isotropic, linearly elastic materials ﬁf;
v, S
or phases. The medlum is assumed to consist of contiguous, irregular zone con- P
o« -, -‘.\
NG tinuing these constituent materials, and the shapes of these zones are assumed T
~ )
not to deviate much from spherical. The spatial distribution of the phases is '
e
'4 assumed to be such that the composite medium is macroscopically (i.e. at a
W scale much larger than the dimensions of the zones), both homogeneous and
- "
-“’
b
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?: S isotropic. Now, if an N-phase medium of total volume V is defined, such that

.

< E: the aggregate volume of all zones containing the ith phase is Vi, the volume

A . . . ‘e
- concentration is ¢y = V;/V and ¢y is also equal to the probability that any

SO
: o arbitrary point within the medium is located within a zone of the ith material.

b ,)‘

N It should be noted that in the limiting case of very small concentrations, cj,

i

i: - C2, «¢s CN-], the first N-1 phases will tend to appear as isolated inclusions

- o in a matrix consisting of the Nth phase.

Wa -

D

In order to obtain to effective overall (macroscopic) shear, G*, and bulk,

L i: K*, moduli of the medium, a uniform stress field is applied at its boundaries.

:3 Then, the stress and strain field, in each of the phases is evaluated as ex- -

o -
? e
. 'a plained in the next paragraph. Once the fields are determined for all mater— ]

ji - ials, the effective moduli, G* and K*, can be calculated by equating the strain ':f:

:ﬁ ’ energies of the macroscopic medium and of the phases. Again, the problem ﬁ{;
Pl ‘-. *s

. . ’ -
4 - - . s

~ [‘ reduces to a number of coupled equations for K* and G*, which are in terms of e
;: the properties of the individual materials and of their volume concentrations 7}:?

M A
:‘ T (Budiansky, 1965). This method has been severely critized for taking enormous ;j:'
x Y

liberties with the geometrical arrangement of the phases (Christensen, 1979).

’
L
Wl
]
.

o 3 .

N, To calculate the elastic field in each material, the geometry of the different :Q;
L . '.:"::
- . zones containing the phase is successively rearranged to view the phase as a e
. - 0
single inclusion. However, the method is relatively simple and in many in- Qu~
- KAt
.~ oo
RIS stances, when used with caution, gives very good results. Furthermore, it has :¢$‘
-~ ‘_:.:-u
RXE been proven by Hill (1965) that this "Self Consistent Method" yields results %:f
'. K} - ..,,. V
for G* and K* which always lie between the Voigt and Reuss bounds, that is, the Lol

. spatial average of the moduli of the phases (Voigt bound, springs-in-parallel) i:;
.-: PR
N ) and of the reciprocal of the moduli, or compliances of the phases (Reuss bound, ﬂ:}
. e Ty

y 4 springs~in~sands). .

': -':‘I“
AT The evaluation of the stress and strain fields in each of the phases is :n:
e N,
. S
- p )

- v

= :
.’: «
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performed for the isotropic case by the solution of the problem of the fields
of an ellipsoidal elastic inclusion (Eshelby, 1957). It was shown by Eshelby
that the fields inside an ellipsoidal isotropic elastic inclusion embedded in
an isotropic elastic medium is uniform; this is an extremely important
conclusion as it eliminates the need for averaging the fields within the
inclusion phase and simplifies enormously the formulation. Later, it was shown
that the stress and strain fields inside an orthotropic inclusion embedded in
an orthotropic medium are also uniform, as long as the cross section of the
inclusion is quadratic (Kinoshita and Mura, 1971).

The averaging of the shear moduli of all phases by a strain energy balance

between -he medium and the inclusions ylelds:

N-1 <
1 1 G Y
Tt L el - ) (34)
G" Gy i=] Gn

N-1 €
1 1 Ki Vi
<=t I c(l -—=)(=) (35)
K* Ky gm) KN 9,

where G*, K* are the desired macroscopic moduli; K;, G; (i = 1,2,...N) are the
moduli of the ith phase, ¢; = V;/V is the volume concentration, and Yi» £y

i
are the values of the average shear strain and volumetric strain respectively,

inside the phase. The parameters 1° and ¢° are the shear stress and isotropic
o

pressure applied at the boundary of the medium.

The Elshelby (1957) solution gives

-— T°
P S (36)
i G*+B*(Gi-G*)

— 00
€y, = —J—F——5— (37)
vy K*+a*(Ki-K*)
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SN 2
b5 i: where a*,8* are components of the Eshelby S—tensor; for the case of spherical ::-',::
2. o
~ inclusions are: L
. !3-’.

> ~ * .,
- o* = _1_+_\)__*_ (38) Wi
. - 3 ( 1-v ) MOE
A RS
« S
i) 2 (4b=5v%) .
NN B" = T (39) e
S IS (1-v%)
) -l
‘{, ‘. -':'-
:: o where v¥ 1s the macroscopic Poisson's ratio of the medium: ::'_:.
N x _ 3K*-26* 2
R ey (40) L
Ny 6K"+2G b
ot
g e By "smearing out”, that is, by replacing the matrix surrounding each inclusion oF
- v (phase) by the desired resultant macroscopic medium, equations 32 and 33 ’
s ‘.

S v
N reduce to: R
. RIS
: E >
—~ - i A
< g o
- z G =1 (41) .‘;\‘
oo i=1 1
ST R — e,
'T - 1+B LG* IJ :.:
VTN

v

L

. N ¢y By
: ) =1 (42) 0%
! ‘.: i=] * Ki :'_:\
La*(w = 1) ooy
o A
-, :{\
"‘_' . which are symmetrical for the various phases. Therefore, Budiansky (1965) has :
_" suggested to use equatlons 41 and 42 for arbitrary concentrations of the :::.:::
" o, _'-:\'1
<N constituents of the composite medium as described previously. Furthermore, e
Budiansky (1965) simplified equations 36 and 37 to: ;f}"

s

“~
o~

PG

o 7 ~

- T r 1 :

\ Y = =% (43) 3

J G* l' * Gi ] kb,.
B 1+ (=% = 1)
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3 I (44) 058
i K * ﬁ_ ol
ll 1+a (Tx ~ 1) b
4 K LN
LOAN
o
- F.--':.l
;: A comparison of Eq. 43 with results obtained through statistical finite NN
R v'..J""-
N
element methods, suggests that the above equations do indeed model the gﬁt&
JE N
v A2
AR continuum described previously, including the assumption that the stress and ;':\
| i
YR strain fields of the phases are approximately independent of location (Fig. 30, e
. - .-‘.-
« O St
- see Petrakis, 1983). b
Finally, Equations 38-42 have to be solved simultaneously to yield the
i desired values of the macroscopic elastic moduli, G*, K*. These resultant
r~ macroscopic moduli are estimates of the overall elastic constants of the
: multiphase medium, and, as mentioned before, they invariably lie between the Sy
:\'.'-::
Reuss and Voigt bounds. Other solutions may provide narrower bounds for the i
r.')_'.
.i actual solution (Hashin and Shtrikman, 1963); however, the Self Consistent ;i#f
v O
X solution, in certain cases, also falls between these narrower bounds, thus )
Y :\-
] shwoing its capability for providing accurate results (Hill 1965). E:t:
A .'_\__"
. E 6.2 The Model [,,_,4
. o RS -,:
: The Self Consistent Method is applied here to evaluate the elastic ,}i\
r_:.-.:.
: constants of a random assemblage of equal, rough elastic spheres that has been :}}f
£
consolidated isotropically and has a prescribed mean void ratio e. The spheres f’
k? are assigned the elastic properties of quartz, and the assemblage is assumed ﬁ:iﬂ
‘\:_
e to be composed of random zones, with each zone consisting of a large number of }5?
. \_} .‘.\ Lh
spheres arranged in either of three regular cubic arrays. ("ol
Je :’\'::;
\J Recently, Shahilnpoor (198l) modelled a random 2-D array of equal steel Q&S
o, :\‘.’\.
) spheres as a combination of Voronoi cells, derived an expression for the ’:ib
S o
. probability density function of the void ratio, p(e), and checked experimen— ;E'
R
:;: tally this analytical p(e) by means of an optical scanning technique, Fig. 28 i;ﬁ:
., Lot
. j:“j
g
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M i
'; U (see also Shahinpoor and Shahrpass, 1982). The expression for p(e) is: 'ﬁg
S A
G -
' A exp(-le) &

N e) = 45) A
e~ ple) exp(~Aepin)-exp(-repzx) ( ':i
Ia . N
KN N o
“.'a * :\:.
" — _ 1 _ emin eXp(-Aepip)-emax exp(-Aepay) Ca
o where e = — (46) -~
\. ~, A exp(—)\elnin)-exp('kemax) (AP
-:" A . “:ﬁ
o R
- ,.»-.,
;4 : A is obtained from the mean void ratio, e, of the distribution p(e). As men- E:E
< . tioned before, it 1s reasonable to model a uniform, rounded-grained sand as a X
SO N
&: random combination of zones corresponding to regular cubic arrays, and this Cji
& %
‘I -'I‘-
TN was the approach taken in this work. The sand medium is assumed to be com 3$§
:Q posed of regular arrays in the fashion of Figs. 28 and 29, where each randomly %&
~ " "o
- '
- :{ oriented Voronol polyhedron is one of these zones, and contains a regular ar- ::é
M o, v .‘-'
by \ F .-
o ray with many spheres. A cross section of this 3~D medium could be visualized oy
Ve ' hra AN
A i approximately by the actual photograph of the 2-D medium In Fig. 28b; in this, 33:
~" -,
s N
:j e the black spots are spheres and the white are voids, and zones of regular uﬁi
‘-J .- '-'\
Y YR
‘ packings can be clearly observed. The macroscopic moduli of the whole medium :f\
e will be determined from the properties of these zones through the self ‘{f
b Rhg
. X consistent scheme. Sy
k.: ,-4- -\-I
* As a first step, the probability density function of the void ratio, p(e), o

pe. %
. ;: Eq. 45, was transformed to the probability density function of the porosity, ~
R PO
- PRI
> p(n), with the basic equation (Benjamin and Cornell, 1970): o
Y S
. l.{ ':{1
N

. de .

- . p(n) = ‘-—* (e) s
:-, :\' dn p :.\:
PSR as the mean of the porosity distribution, n, coincides with the macroscopic -}:

O A
s —- p-

7 4 (measured) porosity of the “"soil®, unlike the mean void ratio e, which is not =
.:. :"_;
TR identical to the macroscopic void ratio (Petrakis, 1983). ﬁf
b -
A y o
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o Then, the probability density function of the porosity, p(n), was dis- 3:9
e
i; cretized into three segments of Iinfluence, corresponding respectively to the Lat
" porosities of the three regular cubic arrays (see Fig. 31): sc (n = 0.48),
Eﬁ bece (n = 0.32) and fce (n = 0.26). The values of npy, and np,x used for all
calculations were those of the sc and fcc arrays.
L
2 -
:j For example, for a prescribed macroscopic porosity n = 0.35 correspond-
~, ing to a mean void ratio e = 0.54, the calculation illustrated in Fig. 3l
b}
>
= allowed determining the following three volume concentrations, cjy:
=
Array oy 8 %
O -
el
- sc 0.48 0.1934 o
r; —"-'a
P
bce 0.32 0.5921 Qé:
F :":-.*‘
- fce 0.26 0.2143 D,
=
E The medium with these three phases was then subjected to an isotropic :@l
- ;\"\‘:
boundary confining pressure, ¢°, and subsequently subjected to small boundary :ﬁfj
- o -
[% e
" stress Iincrements doij, from which the corresponding elastic, very small Sé%
\ -
L strain increments at the boundaries, and the mean cubic medium moduli K* and Eo
>, N
’ G* were evaluated. oy
e
- RS
~ If we now assume that the phases are quadratic (elliptical or circular) ;i;
- hes
in cross section we can apply the Self Consistent method. The assumption that ;qt
o the "zones™ are quadratic in cross-section is important, since if the :i:j
- resulting stress and strain fields are uniform (see Section 6.1) within each i:;
.‘-: !‘-'_:4
“zone", the “zone“ can be replaced by the representative cube of each cubic [
Ty
array (Figs. 15-17) and the corresponding constitutive laws are given by Egs. S
10, 16 and 23. Since in turn these relations depend upon the pressure acting kt;
. o
¥ on each inclusion or phase, the value of the stress fleld at the boundary of —_—
\');
v each of these phases and inside it can be readily obtained from Eshelby's ACh
Y s
R
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S =
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(1957), and Budiansky's (1965) results:
Ky 1
oo - oo | ] (47)

Ky
1 +a*[F_ 1)

where the value of o depends upon the shape of the zone, (Eshelby, 1957),
which here has been assumed to be spherical for simplicity. Note that this
value of;o is independent of the location of the zone, and is thus the same
for all zones containing the same regular cubic array or phase.

Equation 47 is then replaced into Eqs. 10, 16 and , and the problem

finally reduces to the solution of the following equations for the three

phases:
1 o Ky 1
do = do E;~[ ” ] ; 1=1,2,3 (48)
1+ o* (55— 1)
a K*
3 Ccy
) S = 1.0 (49)
1=1 i
* (— = 1)
1+3 (G*
3 Ccy
T = 1,0 (50)
i=1 . Ky
1 + ¢ (E; - 1)
* 1+ *
= 2V 51
@ 3(1-v*) D
2 (4=5v*
gt o 2 ov) (52)
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I/ 6K +2G w2
| &
N - 3 TN
NI where K; = K;(0,), G; = Gj(oy) for the three phases are obtained with Egs. D
W o '-\';
o { 10, 16 and 23 for 1 = 1, 2, 3, corresponding, respectively, to the simple i::
4 R: cubic, body centered cubic and face centered cubic regular arrays. Y
Py N '_‘_'—
37 - 6.3 Application to Quartz Sand f;i
The proposed model was evaluated using as input the elastic parameters of
A ¢

quartz for the individual spheres, which are Eg = 11.0 x 106 psi and vg = 0.15

e
v
Iy

- o
§ (White, 1965, Ko & Scott, 1967, Lambe and Whitman, 1969, see Table 3), and for N
, i *:’;\
1) ot
=~ a wide range of isotropic confining pressures. The values of the computed o
> {{-‘: :
,{ o shear modulus G* are plotted on solid lines in Figs. 32 and 33 versus con- o
.$ fining pressure oy = ¢° for e = 0.54 and e = 0.46, respectively. The values S
- o o
~ ij of the bulk modulus, K*, were also computed, and Fig. 34 contains a plot of eE
A : -.‘:\ ¥
;} confining pressure versus volumetric strain predicted by the model for e = oy
4 - L
-’ - L
< 0.54, where the volumetric strain was derived from this computed bulk modulus, N
7 ° i
— * -
(= €y = 0o/K . : i
,-‘ -~ "‘:)‘-
:- As mentioned before in connection with Fig. 27, regular arrays are much 3:~
» [V )
. P
:. 5: stiffer, up to 3.5 times stiffer, than actual uniform, rounded sands, and this Q?
: ~ fa"g
, . constitutes a serious defficiency of the model. However, Drnevich and Richart i
I ~ .
N e .
# -§ (1970) have suceeded in increasing significantly the shear stiffness of dry, el
:* 83 rounded, uniform Ottawa quartz sand by applying millions of cycles of a shear N
I
) strain slightly greater than the threshold strain in a resonant column device. B
Sey
SN R
> ;: Figures 32 and 33 also include as data points the resonant column experi- -
wy - ‘-_-\. 1
. . mental results obtained by Drenvich and Richart, for macroscopic void ratios, :i:{
n".\‘
. e = 0.54 and e = 0.46, respectively. The lower dotted line in each figure cor— f
¥
j . responds to virgin or uncycled sand as predicted by the Hardin and Black (1966) -ﬁ:
s, e
A - >
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Lo, A
S :‘ correlation, which is essentially identical to the Hardin and Richart correla- a:;
c tion depicted in Fig. 27(b). 1In both figures, two trends may be clearly e
i N observed: a) as the number of -~ycles, N, increases,the test results steadily
a
é :5 approach the model values until, at N = 22 x 106 cycles, in Fig. 32, the agree-
= ; ment becomes excellent; and b) the slope of the line of shear modulus vs con-
f :: fining pressure decreases from about 1/2 in the uncycled state to about 1/3
s
é - after, approximately, l x 106 cycles. The reason for some of the points showing
Y more scatter is probably because those points were cycled more than others with i__
lg. E the same void ratio, or because their void ratios were slightly differed. ii;
P Yt
E N In the above tests, the sand specimens were cycled at strains which, f&;‘
vl b
< ‘; although larger than the threshold strain, were small enough so that no sig- =
.E I~ nificant densification occurs, and indeed the change in measured (macroscopic) iii
. o
{i h void ratios between virgin and cycled specimens was very little or negligible; ;Sf
O N
;: E% thus, densification is certainly not the explanation in the observed threefold :?f
1§ . increase in the sand stiffness. Drnevich and Richart (1970) speculated in Eﬁ;
f; : their paper that the above behavior could be due to wearing of the contacts, EE;_
L increase of the contact areas or formation of additional contacts. The authors ;:i
. ‘ think that this third reason explains the phenomenom completely, as illustrated ﬁié
;& Eﬁ by the comparison with the model in Figs. 32~33, and by the relation between agf.
. stiffness and number of contacts in Fig. 26. It is known that in a random %:;
3 :; array of spheres there may be less contacts than in regular packings (see Smith ;E;
:i t‘ et al., 1929) and, furthermore, it is possible to have contacts which do not ii&
L. -
transmit any load (dead contacts). By continuous cycling such as performed by E;'
e
Drnevich and Richart in their tests these contacts were made load-transmitting ::if
e,
and new ones were formed until all or most possible contacts were created and :ii‘
LG
] .4 the stiffness of the sand coincided with that predicted by the model. It is i;i
'’ RS
i ,Q interesting that the creation of contacts can also be achieved by high ‘:;:
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J
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isotropic confining pressures (Duffy and Mindlin, 1958, Deresiewicz 1958, see
also Fig. 13).

The analytical model proposed herein describes exactly this: since it
assumes that the sand is a random assemblage of regular arrays of spherical
grains, it implies that the number of contacts is the maximum possible.
Furthermore, as shown by Duffy and Mindlin (1958) and Deresiewicz (1959), and
as illustrated by Fig. 13, when the number of contacts increases the pressure
dependency of the moduli tends to change from 1/2 to 1/3. All of this is
interpreted by the model, which is shown here to represent the limiting state,
in terms of number of contacts and of stiffness, that a sand can reach.

Figure 34 shows the confining pressure 02 vs. volumetric strain,-zv,
measured by Drnevich and Richart on the same Ottawa sand specimens discussed
above, for a virgin specimen and for a specimen after 1 x 106 cycles of shear
strain. Unfortunately, no data is availabl: for sand specimens cycled with
more than 1 x 100 cycles. In the figure, lines have been passed which approxi-
mately represent these experimental data. The line predicted by the model is
also plotted, and again it is clear that the cycling is increasing the bulk
modulus of the soil, thus making it approach the curve predicted by the model,
as the number of contacts increases toward the theoretical, maximum value. It
would be interesting to compare the difference between the analytical results
and the experimental values for both moduli, K* and G* at a given cycling
state. The experimental values for the case of hydrostatic compression (Fig.
34) are closer to the model predicted curve than the measurements with shear
(Figs.32-33), for a comparable number of cycles. This is explained by the

fact that, once the spheres have approached each other due to the cycles of

shearing, an increase in ¢© can complete the formation of many contacts, thus
o

further increasing the stiffness of the soil.
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F: o A particulate mechanics (micromechanical) model has been developed for ,,.‘-f
N )
f:: < describing the elastic response of assemblages of identical elastic spheres of :\."
>.. f.; arbitrary macroscopic porosity, ;, subjected to an arbitrary isotropic f—:
= - A
N b
Py boundary pressure, o,. The model is based on the Mindlin-Deresiewicz theory B
- _‘ of bodies in contact and takes into account the spatial variation of porosity. ;:f
. The model assumes that the assemblage is composed of random clusters of A
LN "
. several regular arrays of various porosities and it computes the macroscopic .::-:\
A, .'4:'.*-
s . Sy
VR moduli by means of the Self Consistent Method. Fo
' by
¢ d
— Foo g
N) The predictions of the model, specialized for the case of quartz spheres, S
8 - e
< 4 ate
N :',-j were compared to measurements of shear modulus, Gp,, on uniform quartz saads, )
89 .‘_‘J‘
. . R . " " 2
E with good qualitative agreement; however, the analytical "sands” were as much AL
_j ) as 3.5 times stiffer than the actual soils. This is explained by the fact E'j:"
v ., ._:.:_
.,j o that sands have less effective contacts per grain than theoretically predicted o
ot SRR
N - — . . '3":
Dy for a given porosity n. However, when the sand is prestrained by millions of NN
E 3
N shearing cycles slightly above the threshold strain, Gpax approaches the s
\ L
N ‘o theoretical value without changing n, as the theoretical number of contacts is j—.‘:
O A L/
L e P
W + R s : Rty
v realized. Thus, the model exhibits excellent agreement with results on AN
.- \ heavily prestrained sand, and it also provides upper bounds for small strain -::_
- -~ .‘::
) shear and bulk moduli for all rounded uniform sands.
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v Number
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1,0,3 0.6%99 1.940) 2
. ,0,2 0.659 1.940 3
5 2,7 0.693 2.260 4
al, 0.62 1.701 -
. 11,2,2]5(1,3,1] 0.59 1.4808 N
1, 0.57 1.3753 .-\(
,0,% 0,558 .2635 [] e
” 20,3 0.537 1612 9 ,:\,
6 $2,2 0.629 L1017 10 S
#’ 13,2 0.5%57 . 2614 11 e
2 22,3 0.557 23594 12 2ol
1,32 0.5546 1.2 1) [N ¢
2,2,215(3,0,315[1,6,11 1 0.4764 Q.90 14
. 2,0,4 0.4746 0.903 13 v
L 7 [1,2,6)5(2,2,3] 0.3132 1.054 16 p -
e [2,3,2) 0.5063 1.0255 17 .x.
.0, 0.491 0.9677 i8 htiy
(1,4,2]5(1,5,1] 0.438 0.1822 19 Ry
8 12,2,4 0.6h& 0.8666 20 v
- 1,52 0.398% 0.6625 1 T
oy 2,2,¢ 0.39%% 0.6540 2 S
‘e 13,2,3):(2,4,2]°(1,6,1]10.195 0.6529 3
o~ 4,0,6) To.1198 0.4102 2%
9 L,4,a) 0. 3r6b 0.6303 25
{2,5,2]311,6,2] 0.3520 0.54632 26
. 10 [2,4,6]7[1,6,3] 0.333 0.5%022 27
[2,5,1] 0.3127 0.4550 28
s [«.2,4]7{2,6,2] 0.3019 0.4327 79
- 11 12,6,1] 0.261) 0.1908 30
12 [3,6,3]3(4,4,4] 0.299% 0.3504 a1
1
o
rs ' -
Table 2 Feasible Regular Arrays or "Cells' A
.. (Shahinpoor, 1981) vl
e Coordination No. = N = No. of Contacts per Sphere ;:
! [u,m,2] gives No. of Contacts of Spheres with Layer A
. Above, Same Layer and Layer Below: N = u + m + 2
e
:.'\ TN
L) Y
R ~
., -\
L -
. -
.- QA
. Young's Modulus Eg = 11 x 100 psi e
. . N
) Poisson's Ratio vg = 0.15 NS
e Coefficient of £ = 0.5 Y
- = - e .'.
Intergranular Friction ABAN
Lo
- -
"; Table 3 Properties of Quartz Used in this Report :L
[Note that Lambe and Whitman (1969) reported a different value -
{: Vg = 0.31 for quartz, which in turn was used for the calculations ,\:
L in Dobry et al. (1982). The lower value vg = 0.15 used herein i
is more realistic and was obtained from White (1964) and Ko and ‘?‘
4 Scott (1967)] o
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Initial state of 100-disc
test: isotropic boundary .
stress
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before failure
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Fig. 8 Finite Difference Simulation of a Triaxial Test on a
100-disc Model (Cundall and Strack, 1983)
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APPENDIX A - STRESS—STRAIN RELATIONS FOR A BODY CENTERED CUBIC ARRAY

Following a procedure similar to that used for the simple cubic array by
the authors and by others, incremental stress—strain relations for various

states of initlal stress can be obtained for the body centered cubic array.

A.1 Relation Between Stress and Contact Forces

Consider first a medium composed of identical spheres, Fig. 15b, arranged
in a body centered cubic array. Take as an element of the medium the cube
shown in Fig. 15a. This "elementary” cube (or representative volume), (Fig.
Al), is chosen to contain a sufficient portion of the medium to define the
arrangement. Clearly, each sphere in the medium is in contact with 8 other
spheres.

Increments of the force dPij act on the forces of the cube, Fig. Al, and
they are assumed to be distributed among the spheres in proportion to their
stiffness, that is to their section exposed on the faces of the cube.

The incremental stress components are defined as follows:

2
1 16R
dagy = P13/(7)

6R2
is the gross area of the face of the cube.

At each contact between spheres, the normal and tangential components of
the incremental force are again designated by dNij; with dN;; being the normal
component and dNij being two the tangential components.

Once more, the first step in deriving the incremental stress—strain
relationships 1s to define the expressions for the increments in the forces at

the contacts between the spheres in the cube, Fig. 15a, dNija in terms of the

increments of the applied stress doij. However, since this array is statically
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determinate for initial isotroplic and transversely isotropic triaxial loading,
only the equilibrium conditions are sufficient for the solution of this sub~
problem. However, this case 1s much more involved than the simple cubic array
and tedious calculations have to be performed.

Fig. A2 shows one octant of a sphere at the apex H as well as the point
of contact with the "central"™ sphere and the applied and contact forces. This
octant of the sphere at H will be treated as the representative octant. Now
equilibrium equations have to be written for each spherical octant at every
apex and the contact forces will have to be solved for each case separately.

For example for apex H, (Fig. A2), the equilibrium equations are:*

1
[ Fx. =0 =>-—— dN33 + — a3 - LNl + 2 apyy v L ey vty = 0

1 \c;_ V% = \Q;‘ 4 4 4
(A2)
1 2
[ Fx, = 0 => —— dN33 + —— dN3p + -+ dP32 + 4 dPj 2 +L @y =0
2 Vi~ 7B 4 4 N
(A3)
) 1
[ Fx, =0 => —— dNj3 ~ —= dN}| - —— aNjp + + dPy3 + = dP33 +— dPp3 = O
3 V3o VI~ Ve~ 4 b ‘
(A4)
the solution of which is:
) V2
dN3] = - _8 (dPll - dP33 + dPj) - dP23) (A5)
' Vb6
dN3p = -~ _24 (dP)) - 2dPyp + dP33 - dPjy + 2dPy3 - dP23) (A6)
' V3
dN33 = - -T;'(dPll + dPp2 + dP33 + 2dP)p + 2dP|3 + 2dP23) (A7)

* The primed symbols refer to the local coordinate system.
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At this point the state of stress can be defined and the constitutive law
may be determined for each case (isotropic or cross-anisotropic trilaxial

confinement).

A.2 Isotropic State of Stress:

Applying increments of force along the three principal directions, dPj),
dPy,, dP33 and one at a time, on top of the isotropic confining stress, an
inremental force-deformation relatlonship can be developed. For example, in

the case of application of dPj; (Fig. Al) we have:

1 1
d§j] = - (= Cyh +— C¢) dP]) (A8)
6 3
1
d§22 = + g‘(Cn - C¢) dP1)] (A9)
1
dé33 = ; (Chp = Cp) dPp) (A10)

where C,, C; are the normal and tangential Compliances at the contact.

Similarily applying dP5j:

1 1
dé11 = Cg o " Ce) dP22 (All)
1 1
dé22 = - (; Ch + ; Cy) dPo2 ' (a12)
1 1
dé33 = (; Ch — . Ce) dP22 (Al13)

To determine now the relation between changes in angle and forces we have
to look at the difference between displacements (Fig. Al). For example, dP);)
beling applied, we have:

633“ - 633|E GzzlA - 522|D
+

dyz3 = etc. (Al4)
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Pog
: where ap.. is the length of edge of the cube. Now:
! & 633, - 833, = 20- —- 633 + —— 813 *+ = 693) (A15)
< A E V3 \'%) Ve
$ 3
t. >
: 8§22 =622 =0 etc. (A16)
' A A D
. :("
- -
N Consequently:
NI,
N 2 1
l - dyj2 = (; Cn +; Ce) dPp2 (A17)
~ N
-\ “.
o Evaluating the compliances
::: ~
S L Co = 2% uhich yield
- = 55— whilc elds
‘ n 2Gga, y
S (1-v)2/3
Cp = > x 1 (A18)
li' E (4 \’icszco)l/3 R
o
’\ o imilarily
. )
AR
. 2~y
. C Ce = s * 1 « L (A19)
. - 2(1-vg)1/3 (4 V36g25)1/3 R
:::E L in the case that vg % 0
N
- 1 1
dé11 = (< Cq + = Cp) dP)) i
D 6 3 S
N l--‘
S o
:: . Substituting for C,, C. eqns. (Al8, Al9) we obtain: :.
\" c-‘ i\:::
) -
- -y Y2/3 =
- . 1 (1=vy) 2~y o
o 11 = > L dpy) + < > l 2 apy o
:: ae (4 V?Gszco)l/:} R 6 (l‘\)s)l/3 (4 \/3(;8200)1/3 R ::::
. -t
N | (a20) 7%
¥ r
s ::::.‘.
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2 v s
dey) = 2 1 [(l-vs)2/3 + | doqi (a21) pCe
; 3V3 (4V3Gg2g,)1/3 (1-vg)1/3 L
- N
j RGN
>J o :\:
: 3
g " 1/3 s
3V3 (4V3G2 o) ‘ +N
Y = 0 P
. do11 ; del] (A22) iy
S 7 - i,
I 2[(1-vg)2/3 + 5 e
: (1-vg)1/3 =%
NI s
-~ &
i Similarily —
P
- 1 1 2=y
~ depo = [2(1—\)5)2/3 -———S——J dopy (A23)
PN 3V3T(4V36 26,)1/3 (1-vg)1/3

de33 = dep (A24)

| DA AFLEVAAL M
-y

p ; .
x

r\ -":‘
E\ - Also from eqns. (Al7, Al8) and (Al9) we have that \,.:
:: - ";;:
! L 4 1 : 1 27vg a
SR depg = (1-vg)2/3 + 2 ——=— 45y, (A25) ¢
Lo 3V3 (4V3G24,)1/3 L 4 (1mv)/3 \J'?{
- e
57 N2y
x &
L
£ inally, the incremental stress-strain law for the isotropic case may be i
S B
o e w itten as follows o
R o~
2on A
P dep) = Cp111 dogy + €122 doga + Cp133 do33 r
- L
Non o
not degz = Cyy22 dojy * €232 dopp + €233 do3y RN
;‘: NN
f o
O de33 = C1133 doj) + C3332 dogp + C3333 do33  etc. (a26) Ml
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B 3 xa
:_‘: where Cyjkgq are the expressions (compliances) in the stress-strain relations, E}'

hed

' E as for example, in eqn. (A21), (A22). In matrix form e
2 - - 10 7 i
n T "‘i‘
SIS depy Citir Cr122  ©1133 0 0 0 dopg =3
> oo o
T ™ dep2 C2211 C2222  C2233 0 0 0 do22 ;}:
e v de33 C3311 3322 €3333 0 0 0 do33 2
S = e
- dej 0 0 0 Ci212 0O 0 doy2 T
N - .:'.x;
S dej3 0 0 0 0 C1313 0 do3 :;i
. desrj 0 0 0 0 0 C21323 dog3 -
.o | R
R - - - - - N
::: (A27) -
N L
E s In order for the bcc array to be isotropic under isotropic loading the follow— et
L

TR ing condition must be satisfied: A
' N
e o
Ly A
S C1212 = C1313 = C2323 = C1111 ~ C1122 (A28) ij

a
“E ,\ o
[

, Y
\. _ - - _ _ ;q_':
E; ;, C2211 = C1122 = €1133 = C2233 =~ C3311 = C3322 = Cj122 (429) wTs
N _\‘.'.
R 0
> RN
P L The above conditions are satisfied only when vg = 0; furthermore, in this e

ol
t-:: case of the bec array, as in the sc array, Cjj22 = O and the compliance matrix -:_:_‘:
S o
v ey . '._’..
N Y is diagonal N
In this case: . :
.:;‘ .:-:.-
' 2 1 1/3 R
= Ci111 = C2222 = €3333 = ( ) (430) od
,’f- V3 4V3 Gg* 0o >
p
x %
s /\ﬁ.
‘ ince the compliance matrix is diagonal, its inverse, the stiffness matrix Is ::;,,.:
Pl o
hASE
‘\‘ easily computed by inverting each term: !l.e. 'é:'_'j
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\ » r— Ry
s do 7 1 d _1 ]
)] 11 €11 X
" .‘"
i
A [P NN
} do22 L de22 S
e [ X

o

“\r
Pl

do33 - V_ (4\/3-(; 2 4 1/3 1 de33

 §‘

e
»
'y

ISI
e ™
[
s "t w

" ¢ )

doy2 1 dej2

»
0 s
".".'l.
N
g

do)3 1 dey3

‘_
v
A A
[ Ay |

.
N

S

. .
o

L A

s e

a0
£, 4
s

N do3 1 d
- ! i ! 4L

3 (A31)
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e
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<,

L Fd Lot

QAT

1/3
“ and clearly the shear modulus of the array, G, is G =-% 4 3 GS2 0o) (A32)
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At this point the Poisson's Ratio of the becc array may be computed as follows:

TR
PP AL
¢« ¢ & °
WL
At t
L

m
w
(9%}

m
[\
(3]

Y

.

( ]

= = 3
Vbee 11 Igfll (A33)

T
R R
I

(1-vg) 2(1-vg) i
Vbee = = (A34) B
2/3 Sl

(1~vg) Y ek

For different values of vg, the Poisson's Ratio of the bcc array, vpee, may be

L computed; a plot of vy.. versus the Poisson's ratio of the spheres, vg,

N

A appears in Fig. (21) together with the variation of vg, and Veee with vy for

~

. -

Y easy comparison.

[

-
-

I‘ :;

1 -

OO >3

) PR
B~ ., _4 . e Tt Y e e L Tr T T e e LT e e T e T T T e T e N T eyt T ST e \:4' :
.- \“\'- "'\ \'\."‘. -\. SO \'\"\ DA Sl N e R -.'-."»."-.' e -.'-.'».‘ SRR ,\'--\"'-.\'\,"-,- TN



Lol ,‘f' Ll el I ARcdiac ol P. 1':7_ LafMCa
.

e,
A
RS
.
e N 0 )
gt o/

95 :
- A

T ;~
“ & o

~ A.3 Transversely Isotropic State of Stress (Triaxial Loading) e
] Loy

. P/
! E As in the case of the simple Cubic Array, the application of an aniso~ s

Y
‘o] troplc stress increment will result in a varlation of the contact forces and, _\::
5, .

-. .'J‘ h )R
:‘_. "y consequently, of the corresponding contact stiffnesses. Therefore, in order ?:::
PO | ,‘:':'b
e to obtain the stress strain relatlonships, the derivation must be performed f

k.

- '~ L.
’- 2 once more distinguishing between compliances at contacts with different e
. . e
-y loading histories. AN
'f '..: -.-"J.

) Consider now the case of cross—anisotropic stress (“triaxial test™) s
‘;Z D imposed after the array has been subjected to an initial hydrostatic stress. ~
~" - :
N That is: (Fig. A3) N

. . '{;‘.
[ !J .l_.

: ) RO
_':: at  t =t, 0]] = 022 = 033 = 0 (A35) el
SR iy
45 A
. t =t} 011 = 033 = 0 (A36) D
a i

< > 022 = do t 04 (A37) o

NI RO

SN o

N The contact forces during this Anisotropic Loading are: -

L e ~
.": : ' 2 , .7:.\~
LA dN = ¢ 1 dPy] = dP33] (A38) O
31 8 .
.J‘. [} - . Vo6 r .;:'.

_ dN32 =t —7 [dP]] - 2dB, + dP33] (A39) .-
RN Y

v e N
‘}: t V3 r .:-‘.-_
> - dN33 = ¢ (dP11 - dP22 + dP33) (A40) .
AR 12 NN
N s QAN

ieh

o “ in the case of transversely isotropic loading the above equations simplify to -\:
oo ENRY
) o
('. ~ * ":.‘
RS The computation of the compliances for the case of anlsotropic loading for m e
. 4 both the sc and the bcc arrays has been done in order for the results to be .

:: used only for the special case of wave propagation. This way, the load was r:-'

SIS assumed to reverse direction, and for thils the elastic tangential compliances :.:::

e were used. In the general case, the load could either increase or decrease POBA

' monotonically and different compliances in each case would apply. :.\:.
- ™
- P .
z' < ;
-:\

. - _:.:.:-I'.;I'"-“::_:-‘.;4‘;4'_'_-:"‘:-‘,;-1'\'-",;-: '-._:¢-: \' -‘: R T i N LI TR - St e AN -
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)“' o, o« v, 2 AR e Ty 2 Y Y W U Y - . - LTI i s " v, B Padi'a M N
<
. E: l(
L 96 g_‘.
i o
1IN i
o, 9 dNj; = 0 (a41) T
"‘ '.0:'.’
B A
J -
dNjz = £ == dp, (442) s
L 12 R
A T
S 33
b anj3 = + —— dP (443) P
‘.: \:: 12 :
'.:. ": This is the case of the two spheres in contact where the normal force is
. T b
increasing from N, to N, + N* and the tangential force from O to ’I‘*, with P
. 0 ° & D,
dT e
S B = d_N > f Mindlin and Deresiewicz, 1953) :::::i
- 2
- K dNé ,:\-f
~J dT 2 VF 3
= s —< =V2 > f (AL44) k -
3 P T 2
N RN
TN RN
> w5
’ (usually 0.5 < f < 0.8 for sands) '.::
l l'{_

‘
(P
LB il

bs

in this case the Normal Compliance, C,, is:

. -
. s
by - l=vg “
P Cn = ' e

n 2Gsa :.:’:‘
E- L.
e NCAT,

2 3(1-vg)

. 3 = S

. where a® = ———— R(N, + N) (A45) o
c A R

S o

.\A-‘p
. and finally s

T Ny
-' -, .'.‘.,

- 3(1~vg) 1 o O

- 2322020 3 LGy (446 A

N s 3 o e
. then 'i

- R
S ) 1/3 -1/3 DS
v (1-vg)? / 1 Oa 1/ 1 s
S Cn = |—— ] [1+3 G0 % (a47) e
: 73, 4V3 Gg 9o ° ,hfu
5 B The Tangential Compliance, C., is: N
v :

.1

T
. \."\ \"' "\. "\"' < "-‘:f: J';'J':: TN ';-‘ » 'J‘\-’\ g SOOI TR A SRR SN ,"._-,. .
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-

A0

Ce =28 (Lo w(140)[1-(1-0) sl 12 (A48)
t = 3Gga 8 [ ®) F(rvery) !

AR

B ORI
LA AR A

< F
a“

Ny
XX

*
where 0 = -f—, L= = and L* = r
B fNo fNo

J‘~fﬂf

&

However, in this case, since the load decrement is small, then L* - L 5 0,

0,4

. e S
alalat

therefore

I A
Wt
A"'.’

2=vg
Ct * 754 (449)

‘.’ 5 LR

. " A'. ‘\
S

S
in this case seid
! <

o
2 . 1/3 e, CU3 2
Ce = 21173 [ T [+ ) (a50) "2

4 3 Gszao 3 "% R

The constitutive law for this particular loading may be developed in the same o~

4
atal L

manner as in the case of the isotropic loading, i.e.

AN
2Ll

[]

dsp 2

o]
LA

1
[g Cn +-§ Ce] dP22 (a51)

e Ty
ﬁ _&I‘. “y ‘w

finally

A
.

a

()

. ‘u} “,':'1’-'!
!5“5‘,'_", ','

-1/3 2-
224)] T~ ¢ —05 7 4oy,

dego
(I'Vs)1/3

]
~—
|
—_
Q
o
. n.' ..' q.' .
‘v I£
RSO

LR Y

v

(A52)

e v

MY

for v, = 0.0

®
XX
bl

LI
PRV ORI

1/3 o, "1/3

[1 +-§ [;;j] doy2 (A53)

LA

degp = 2 ( 1 )
V3 4V3—G52°o

}»ss

in the case of isotropic loading and vg = 0, the above reduces to o

LN
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1 1/3

V3~ (4\/3_ GszcoJ

deg2 = da22 (A54)

which is the same obtained before, eqn. (A30). Analogously

) 1/3 -1/3 -
dej) = 2 ( 1 ) [1 +-l [géj] [(1-v3)2/3 - ‘_"‘—Ji“‘gj da22
VI 4V3 Gg2q, 3 % 2(1-vg)!/

for vg = 0 this reduces to zero.

The Shear Compliance is computed as follows:

[% Cn +-§ Ct] dPij (A56)

dsy 4

1/3

-1/3
)+ G2

2 1

( /3 + 2-vg
V3 4V3 Gglq,

d
2(1-vs)1/3] =

dey j [4(1-vs)2

(A57)
for vg = 0 this reduces to

1/3 -1/3
2 1 |1 + 1 (321] doy 4 (A58)

(
3V3 4V3 Ggla, 3 %

dsij =

for g, = 0 this reduces to eqn. (A3l). Therefore, for the case of vg % 0

1/3 | oy "1/3

2 1
Ci111 = C2222 = 3333 = 3\5'(4v§'c 2 ) [t *3 (5,)] *
s [o]

2~
/3 + Vg

2
" [Aove) (1-y,)1/3

(A59)
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LI

3
- \'_\"
-« a &

z’ » 1/3 o -1/3

. -2 1 1
A Cl122 = €2233 = C3311 = —— ( ) L+ (5] *
- ! V3 4V3 G 2q, 3 %

[ A A A
.l

g
A

F

o
Y,
2550

ii
s i 2=y ;
Y * 1(1-\)5)2/3 -k (A60) '
N 2(1~vg)1/3 R
'3
;3
N 1/3 -1/3
4 Cla12 = C1313 = C2323 = —— (—2——)  [1+1 (2] *
= V3 W3 Gg2a, 3 "% e
s 3
- {:\ .:‘;._4
. 2 2=y s
}‘. * [4(1"\)5) /3 + —_s (A6l) _.::\‘
L, .
i (1-v)1/3 e
e ir:-
¢’ .-'r.h;.
R e
L :} In this case the material will be isotropic under cross anisotropic loading A
3 e
s gy
" . only if in the compliance matrix ;"\5
3K
‘4 CA s
r.. - = )
AN Cii11 = Cr122 = 1212 T
v e
b p g
! Performing the calculations we see that indeed, :.’::;f
1/3 -1/3 2— s
1 1 : 1 Oa - 2/3 Vs A
T Ll ) (L1 (23] (40w == = ey
v 3V3 4V3 642, 3 "% (1-vg)1/3 i
- O
- * L'?.
. Therefore, the bcc array is isotropic under cross anisotropic loading ; this f,
- e
'.: is a serious deficiency of the model and should be attributed to the symmetry f';:::
. R
AT N of the array. et
r
> . In the case that vg = 0, the array is still isotropic but this time the ',:f‘"
v e, Aae
'4’ i compliance matrix is again diagonal: :::
D - %
-4 ‘-I" 'f
- *for the conditions specified previously. .jj:::_‘
., ’-\' :::-:.,
1 .,- .
‘ K :?_;
. S
:-.1,\'.\1 B R A A N R i A O O M N N L BRI e I :':.
N A S A A A RN o : RSP
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] APPENDIX B SIMULATION OF TRIAXIAL AND PURE SHEAR LOADING IN CUBIC ARRAYS e

M g’

The three regular cublc arrays will be subjected to a finite loading in

\f such a way so as to cause fallure when applied along a principal direction. :4:
- - v
’ In the case of the simple cubic array, this corresponds to a pure shear ;j”

M

ﬁ; loading, since for a triaxial loading the array locks. Conversely, the body N
e NN
. centered cubic and the face centered cubic array will be subjected only to e
. X
f a triaxtal loading, since for a pure shear loading the array also lock. é}f
[ )
In order to obtain a finite stress strain relation in every case, the _ s
L
WY
¢, 1tances need to be integrated along the loading path. Once this is done, :}}j
g':\..
. finite displacements are computed and then the strains are obtained in the :}:
e ="
same manner as !n the {nfinitesimal constitutive laws. Y
Finally, the load s increased until fallure (gross sliding) occurs in ;k:
e
e
R
“ the array; in the statically determinate arrays gross sliding at a contact N
i translates into fallure of the cublc array. 1In the statically indeterminate lj{
NN
(SR
-ﬁ face centered cubic (fcc) array, the medium does not fail immediately, but A
. N
A
first the number of contacts reduces from 12 to 8 when the fcc array becomes ~
o :
- statically determinate, and then sliding at one contact becomes failure. s
o
:ﬁ Bl The Simple Cubic Array Subjected to Pure Shear Loading Qe
. Consider the Simple Cubic Array shown in Fig. 17 and consider a force T .
< acting in the x| direction (Fig. Al). The s.c. array 1s subjected to an f{;
el
7 initial isotropic force N, and the value of T increases monotonically from B
,. ] o ..\
zero to T*, where T* is the value of T that causes fallure in the array, while B
v O
:~ t N, remains constant. In this case the tangential displacement is given by 53\
LS >
l~
. Mindlin (1949): o~
Y o
I -
R
e
2 N
. :'.
e
4 .
na <
: N

e R A YA L Y L N T S G NN

I L Y
N
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J s
§ i 1
A
N 3(27vs) [1-(1-= 2 (463) 3
§ = — fN - - == (S
3 8Gga ° ( fNoJ ] ,""
s s :::
N 3(1=v N R oS
) 3 -2 sl o s
:’\: where a 8Cq ::
1. o
W) v
L is the radius of contact. £
\‘ I' _.;\'-
M Now y = ; substituting the expression for a3 into eqn. (A63) and after trans— -f._‘_
b .
e ;-:: forming the forces into stresses we obtain: '.":-\.':
DT A
1/3 —
Fo 3(2-vg) * Og - * T 2/3 B
. '_1.‘ Y = ————1—/3— f 2J [1 - (1 - -fO—J ] (A64) RN
N (1-vg) 12G¢ °
0 2
! - .
‘ E:" The above equation has been plotted in Fig. 22 for different values of ¢, and N
- .,
X § f; obviously failure occurs when ',:-:'.f-
< - s
- ’-
S ™ = fo, (A65) S
* . L
b

g
L

and at this point the value of the strain 1s*

R o 8
9

’ .
- 2 1/3 e
'Ca . 3(2-vg) g LS
- YE = Yt = > 2 (466) o
s (1-vg)1/3 12642 R
- M
€
J - Substituting the properties of quartz (Table 3) in eqn. (A66) we obtain T
ST s
- LN
3 Ye = 4.5 x 1073 (gg)2/3 (A66a) R
. I
. with ¢, in psi. h:_ \
" l;:- B2 The Body Centered Cubic Array Subjected to Triaxial Loading :;:::-:'
i 3
. Conslder the bcc array shown in Fig. 15, and consider a force Pa acting N
N N o
o N L 3,
~ in the x) direction, Fig. Al). The bcc array is subjected to an initial P
l - 7-’ -
LIy isotropic stress g, and the stress 07 = g5 is increased monotonically from O N
. Cal DRt
‘t [ ‘.‘.:‘-
) s
N, X * The value of v, = 0,15 used here was obtained from White (1964) and other N
= b sources, and is different from vg = 0.31 used in a previous report (Dobry ’D"
= et al., 1982). The value vg = 0.15 is more representative of quartz; as a AN
. result, the values of the threshold strain y¢ computed using Eq. A66 and vg R
RN = 0.15 are slightly different from those originally obtained by Dobry et al. f\"
YRR (1982). \
1 -
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o NN
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to a value g, at which sliding occurs in the array. In this case, the loading .

s Py
7N -
B

path is as follows R
ﬁ ~ at t = t, Pj] = P22 = P33 = P, (A67) ;:i
GO a7
VO at t = ] P} = P33 = P, (A68)
T A u.'..
X K ‘.J
. L, P22 = Pg + Py (A69) ‘
. 2 ]
':: :{ The contact forces are (eqns, A5, A6, A7) Y
~ ..
"' o"'-
~ " ' V73 R
A dN = ¢ dPy; - dp =0 (A70) o
Y 31 s L1l 33] 2
AW % 6 N i
‘:: - dN3p = % 4 [dPll - 2d§2 + dP33| = —TE'dPa (A71) i;
2 o
o "\ a g .
\% p4
la dN:;3 = % ?2 |dP)) + dPp2 + dP33] = —:13-2- dPa (A72) :
-_\ -".'-
» N o
\j: B and the ratlio between the increment of the tangential force and the increment j&
). = ‘,.:\.-
I E, of the normal force, 8, 1is e
- . “-"'
. ' e
AR T dN ) >
g = 4L - EN‘?'Z" =V2 (A73) o
PR dN 33 -5-‘-
e .'_:
| In this case B8 > f, the coefficlent of interparticle friction, therefore the =
* o
~ o~ RS
L values of the compliances are: Mindlin and Deresiewicz, 1953) RS
& v, .
': - "' ‘e
‘o a) Normal Compliance, C, oA
W NN
RN Cy = P2 (A74) >
e e n - 2Gga S
S o
2 3
é: 2 this expression for C, being valid no matter what the loading history of the S
it Y o' A
] spheres is. Now s
- . W
-
:'v ‘:l 1/3 D0A
;. a = ao (1 + OL) (A75) ;\'-
-~ . o~
) ,} where S-;'
Z 3(1~v) 3(1-vg) VT 2
et .. ag = —g— N, R=—p——— P, *R A76 e
GRS ° T TE, MR T, 4% (476) G
P i
’ .. e
y .
-:" Y
> o \‘.“.
< e
-,-\.~ .‘._(\ "o f_a-\z: o ‘w\. I_.’_ ..-r_ :.‘~.\-_. - ‘_*_ \_,\. d\‘ \_ \__-_'_,\_ \_.‘; '\ LN \ . -;__\;_;‘_._- .. e YR : R
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Also 6 =—

]
i

"
=z
©
xr

T B I E X AR
L
n
.
B4
Y

o

4
i The vertical displacement, 622, has two components; a 63'3 and a 6;3 !
A L\1 component: b:-'.;
NN s
: .,:\
RS 2 2 PN
R 8§22 =833 + —.6§ (A77) b,
AR the § _ component is computed as follows: }"
e 33 o
: o
'( ] -
: dé 1=y - e
.- 33 S 1/3 -
y X Ch = = (1 + eL) (A78) AT
i f: n dN 2Gga, .
T R
'q. '- . -‘l
) DA d§33 1-vg aN -1/3 . ':::
% dN " 26ga, (1 T ENg (A79) R
J)

<JK-
=~
e r\v:_

- e
-: , N lvs N -1/3 (480) o
N 8 + — dN A Lot
:ﬁ : 33 é 2Gga, [ No] .‘::_,
i finall &r
nally r
% E -l
: 1/3 o
o D
«~ -" 2 2/3 i..‘--
. A 2 3 [/ g [
T 633 = 2VI R(1-vg)?/ (—=—) [(1+ ic—a) - 1] (481) K
E 4\/3_632 3 % L
oon 2
e, = o
, The 62'3 component will be computed from the tangential compliance since it is e
R NS
- ;‘_- a tangential displacement; the tangential compliance is (Mindlin and Vo~ d
) e
K Deresiewicz, 1953): Py
v - L.
A e
v -1/3 -~
N 2 L o
\:f ;'. Ce = .@—a- [6 + (1 -8}l - l+OL) ] (A82) La?
LA v
v NN
o N
:n :'I \'..
- Ny
v AR
B¢ .
g %
NN TN NN NN RN SN T e e T T T L T T g T D

o
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A
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B Simplifying:
l 2-vg 1 L -1/3
Ce = o + (1-8)(1 - T3atr (A83)
“Csa (|roy1/3 [o + (1-0)(1 - Twer) ]
o,
4:, and finally
&-
C, = * + == (1 - 8J[(1 +% (o-1) (A84)
t  4Gga T 1/3 4Gga ( J To ]
- (1+6 —
.'__ To
now _
% T
as -1/3 3
23 T T -1/3
. —==Cy 8|1 + 0/ + Cp (I-6){1 + 7 (8-1) (A85) o
- dT ‘o L T,) % [ To ] N
r‘n ‘s'.. +
. where f,:.:
N KRY
LA
1
Cp =V oS5
i t:o 4Ggay ]
.'.: Now :..:-"". !
'S = -
- ' T -1/3 -1/3 4T
§23 =] To Cc 8(1+6 ) dT + C¢ To(1-9)[1+(8-1) —] — (A86) -
| o o o] o To To
i RS
- '._’.:
; finally ::':'. '
>» ,"t '.
2/3 2/3 AT
3, 2 T . £ T \
- 2 | — N o —— - - + -— .- —— - y
= 823 = 3 (gg5a, ) el (1 *+ g7 1= L Y ) 11} (a87) R
.‘:\i
2 : R
implifying further and expressing the displacement in terms of stresses we \JS
) obtain: E"
- '_',\:.:
i 2 2 17 2/3 2/3 f-:i‘:
! Vg Jo . V2 o £ V7 o :',\-_‘.
$237V3ER [ A ey B U EL Gl Vrvalee MRS OP R
" (1-vg)1/374v3 6 2 8 ’3f % A3
A (A88)
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In order to compute the vertical displacement of the array, 622, we have to

substitute equations (A81) and (A88) into eqn. (A77):

622 =

2
8§29 = 4R(l"\)s)

+ V6 fR

' 2 '
§33 + — 823

5[

f
~-17-[[1+(= -1)
(1"’3)1/3 4\/3—682 0J ] [ [B

.................

(a89)

V2 9, 2/3

S o) TH

3f 9o

(490)

From the above equation, A90, the stress-strain relation may be computed

for the bcc array under isotropic loading, and it is:

€22 = |(

* [[(1+V_

The above equation is plotted in Fig. 23 for various values of o, and f.

2-vs x

{V3(1-vg)

— Y% 1%
4T G, o

- a+dE-n
[

(1-\)5)1/3

(A91)

this point, the value of °a/°o which causes failure in the array must be

determined.

the bcc array is statically determinate failure in one contact implies failure
of the array.

occur simultaneously at all contacts.

T
o

N_+N

We know that

Sliding will occur when

Failure is defined as sliding at the contacts; this time since

Furthermore, because of the symmetry of the array, failure will

(A92)
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where A is the area of the face of the bec array. Then:

T = f(Ng + N)

V6
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2
L 4

v
s
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and finally, o,/0, at failure, (ca/co)t is

LT R v,

"_a) . 3 (A100)

L
90T viig

If 094 = 0, + o, (total stress), then

=ﬁ_ff+1 (A101)
3

3
in terms of total stress (Fig. 24)

In order to compute the strain at fallure, 822f, we must substitute the

o222 1e¢sl 2

equation for (ozz/oo)f, eqn. (A100) into the stress-strain relation, eqn.

(A91). Doing this we obtain

.
SRR
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4V3 Gy V2-f
2/3 2/3 3
a0 e
D
e —Ey T aen e (£ Y20 Sy (A102) RO
VZ-f B Vi i
for the properties of quartz (Lamb and Whitman, 1964, Ko and Scott, 1967, E'f
White, 1964) t
e
4<‘..<‘
Gg = 4.783 x 109 pst o
vg = 0.15
f =0.5
tue strain at failure is
eaz, = 3-438 x 1073 ,2/3 (in percent) (A103)

"

and Yt EZZf for vg = 0.

which is the threshold strain yy for the array. Thus an equation is plotted
in Fig. 21 together with the other expressions for Ye for the other arrays

for easy comparison.

B3 The Face Centered Cublic Array Subjected to Triaxial Loading

The triaxial loading of a Face Centered Cubic Array was solved by Brauns
and Leussink (1970). 1In this work, the stress—strain relationship is not ob-

tained for the whole range of values of o37/0, but only for those which make

T BOAEARES
. v ’ L4
3 ' e/ L 5

",

the array statically determinate. It 1s extremely hard to determine the ALY
NN
values of compliances for cross anisotropic loading (Duffy and Mindlin, 1957); =
s
DS
therefore once sliding occurs and the number of contacts decreases from 12 to PO
8, the array becomes staticzlly determinate and it i{s possible to compute a -

stress-strain relatlion up to the point that the array fails (range b - Fig.
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B2). Once the array has failed, simple geometric considerations make the
computation over the strain range c possible (Fig. B2).

Consider the fcc array in Fig. Bla and the cross anisotropic loading as
shown. The free body diagram of the octant of sphere A is shown in Fig. Blb.

The equilibrium conditions yleld
= V2 R? g (A104)
N -T+N| = 2VZ R g3 (A105)

Also the sum of the displacements around a closed path must vanish (Duffy and

Mindlin, 1957), which ylelds
aj ~a+é =0 (al106)

The normal compliance 1s found to be

1-v
Cq = %:7 - s (107)
[3(1-\)s)<;s?-m~1]1/3
and the Tangential Compliance
dN
2=y _ 1 - £ —
ce - L8 TR R (4108)
2 [3(1=vg )G 42RN] -1,
fN
The strain 1s
1
€11 = — (a +8) (A109)
11 2R

Integrating the compliances and substituting the results into eqn. (Al09), we
find after transforming the forces into stresses that the strain, €], is

given by
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this expression being valid only for the range of (0])/033) in which the array )hj\;

5
e
2

is statically determinate, that is 8 contacts per sphere (range b in Fig. Bl). o g:

Failure 1s defined again as sliding, but this time when the whole array 'Eies

v
2 &0
’,

v
a

L
L™

fails, that is when the number of contacts from 8 reduces to none.

bl o
4

VOl
5
55

Using the same criteria as in the other arrays, the critical stress ratio

Y

at which the array fails is
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g The above equation is plotted in Fig. 24,
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